论文部分内容阅读
Defect evolution in a single crystal silicon which is implanted with hydrogen atoms and then annealed is investigated in the present paper by means of molecular dynamics simulation. By introducing defect density based on statistical average, this work aims to quantitatively examine defect nucleation and growth at nanoscale during annealing in Smart-Cut~ technology. Research focus is put on the effects of the implantation energy, hydrogen implantation dose and annealing temperature on defect density in the statistical region. It is found that most defects nucleate and grow at the annealing stage, and that defect density increases with the increase of the annealing temperature and the decrease of the hydrogen implantation dose. In addition, the enhancement and the impediment effects of stress field on defect density in the annealing process are discussed.
Defect evolution in a single crystal silicon which is implanted with hydrogen atoms and then annealed is investigated in the present paper by means of molecular dynamics simulation. By introducing defect density based on statistical average, this work aims to quantitatively examine defect nucleation and growth at nanoscale during annealing in Smart-Cut ~ technology. Research focus is put on the effects of the implantation energy, hydrogen implantation dose and annealing temperature on defect density in the statistical region. It is found that most defects nucleate and grow at the annealing stage, and that defect density increases with the increase of the annealing temperature and the decrease of the hydrogen implantation dose. In addition, the enhancement and the impediment effects of stress field on defect density in the annealing process are discussed.