论文部分内容阅读
提出一种贝叶斯网络结构复合学习算法.该算法将EM算法、蒙特卡罗抽样算法、进化算法结合起来,用EM算法、蒙特卡罗抽样算法将不完整的数据集转换成完备的数据集,再利用进化算法进化网络结构.这种算法能够克服EM算法容易陷入局部最大值的缺陷,对于缺省数据处理是基于后验网络的,网络结构随进化计算不断优化,得到的补充数据可信度比较高,网络学习效率高、运算性能好.