论文部分内容阅读
在人脸识别算法中,已有的计算不相关鉴别矢量集的算法均是基于图像向量模型的,因而将遇到所谓的小样本问题,而且由于采用迭代求解方式,算法运算速度缓慢,为此提出了一种新的求取不相关鉴别矢量集的算法,即一种基于图像矩阵模型的2维不相关鉴别矢量集算法。算法由于采用了图像矩阵模型,解决了小样本问题,通过对类内散布矩阵的白化变换,使得推广的2维线性鉴别分析模型具有类似的2维主成分分析模型的形式,从而将两种算法的模型有效地联系起来,进而可以非迭代地求得2维不相关鉴别矢量集,不但求解速度快且数值解稳定。在ORL和Ya