论文部分内容阅读
朴素贝叶斯分类器是一种简单而有效的概率分类方法,然而其属性独立性假设在现实世界中多数不能成立。为改进其分类性能,近几年已有大量研究致力于构建能反映属性之间依赖关系的模型。本文提出一种向量相关性度量方法,特征向量属于类的的概率由向量相关度及其属性概率计算。向量相关度可通过本文给出的一个公式进行估计。实验结果表明,使用这种方法构建的分类模型其分类性能明显优于朴素贝叶斯,和其他同类算法相比也有一定提高。