论文部分内容阅读
摘 要:数学,是一门自然学科。对于所有的高中生来说,要学好这门学科,却不是一件容易的事。大多数高中生对数学的印象就是枯燥、乏味、没有兴趣。但由于高考“指挥棒”的作用,又不得不学。“怎样才能学好数学?”成了学子们问得最多的问题。而怎样回答这个问题便成了教师们的难题。很多人便单纯的认为要学好数学就是要多做题,见的题多了,做的题多了,自然就熟练了,成绩就提高了!于是,“题海战术”便受到很多教育工作者的青睐。熟话说,“熟能生巧”,当然,多做体肯定对学生数学成绩的提高有一定的好处。但长期这样,只会使数学越来越枯燥,让学生越来越厌烦,于是出现厌学、抄作业等现象。
关键词:一题多解;基本思想;练习和习题
对于传统的数学教学来说,教学过程的重点不外乎为:讲解定义推导公式,例题演练,练习,及习题的安排。下面就一题多解与一题多变在教学中的运用谈谈我个人的几点看法。
一、在例题讲解中运用一题多解和一题多变
在例题讲解中运用一题多解和一题多变,就不用列举大量的例题让学生感到无法接受。而是从一个题中获得解题的规律,技巧,从而举一反三。
下面仅举一例进行一题多解和一题多变来说明:
例:已知x、y≥0且x+y=1,求x2+y2的取值范围。
解答此题的方法比较多,下面给出几种常见的思想方法,以作示例。
解法一:(函数思想)由x+y=1得y=1-x,则
x2+y2= x2+(1-x)2=2x2-2x+1=2(x-1/2)2+1/2
由于x∈[0,1],根据二次函数的图象与性质知
当x=1/2时,x2+y2取最小值1/2;当x=0或1时,x2+y2取最大值1。
评注:函数思想是中学阶段基本的数学思想之一,揭示了一种变量之间的联系,往往用函数观点来探求变量的最值。对于二元或多元函数的最值问题,往往是通过变量替换转化为一元函数来解决,这是一种基本的数学思想方法。解决函数的最值问题,我们已经有比较深的函数理论,函数性质,如单调性的运用、导数的运用等都可以求函数的最值。
解法二:(三角换元思想)由于x+y=1,x、y≥0,则可设
x=cos2θ,y=sin2θ 其中θ∈[0,π/2]
则x2+y2= cos4θ+sin4θ=(cos2θ+sin2θ)2-2 cos2θsin2θ
=1-1/2(2sinθcosθ)2=1-1/2sin22θ
=1-1/2×(1-cos4θ)/2=3/4+ 1/4cos4θ
于是,当cos4θ=-1时,x2+y2取最小值1/2;
当cos4θ=1时,x2+y2取最小值1。
评注:三角换元思想也是高中数学的基本思想方法之一,通过三角换元就将问题转化为三角恒等式变形后来解决,而三角恒等变形却有着一系列的三角公式,所以运用三角换元解决某些问题往往比较方便。
解法三:(对称换元思想)由于x+y=1,x、y≥0,则可设
x=1/2+t, y=1/2-t,其中t∈[-1/2,1/2]
于是,x2+y2= (1/2+t)2+(1/2-t)2=1/2+2t2 t2∈[0,1/4]
所以,当t2=0时,x2+y2取最小值1/2;当t2=1/4时,x2+y2取最大值1。
评注:对称换元将减元结果进行简化了,从而更容易求最值。
这三种方法,在本质上都一样,都是通过函数观点来求最值,只是换元方式的不同而已,也就导致了化简运算量大小不同,教师通过引导、启发学生主动思考、运用,提高了学生对数学的认识,也增强了学生思维能力的提高。
解法四:(运用基本不等式)由于x、y≥0且x+y=1
则 xy≤(x+y)2/4=1/4,从而0≤xy≤1/4
于是,x2+y2=(x+y)2-2xy=1-2xy
所以,当xy=0时,x2+y2取最大值1;当xy=1/4时,x2+y2取最小值1/4。
评注:运用基本不等式可以解决一些含有两个未知量的最值问题,但要注意等号成立的条件是否同时满足。
這样一个由特殊性逐步一般化的思维过程,加强了学生思维能力的培养,通过这样一系列的一题多解和一题多变,培养了学生的综合分析能力、提高了学生数学思维能力,渗透了一些数学方法,体现了一些数学思想,也提供了一个推向一般性的结论。在数学教学中,若将经典例题充分挖掘,注重对例题进行变式教学,不但可以抓好基础知识点,还可以激发学生的探求欲望,提高创新能力;不仅能让教师对例题的研究更加深入,对教学目标和要求的把握更加准确,同时也让学生的数学思维能力得到进一步提高,并逐渐体会到数学学习的乐趣。当然,在新课的教学中有些方法所用的知识,学生还未学到,此时,我们可从中挑选学生学过的知识。其他方法可在今后的总复习中给出。
二、在练习和习题中训练学生运用一题多解和一题多变
在数学教学中,很多老师在课后给学生布置除书上练习题和习题以外的大量习题。使学生感到负担很重。我们为什么不能从书上的习题入手,进行演变,逐渐加深。让学生有规律可寻,循序渐进。日积月累过后,学生解题能力自然提高,对于从未见过的新题也会迎刃而解。这样的作业方式不只可以达到复习巩固的目的,还可以提高学生的探究能力及学习数学的兴趣。
例如,在学习抛物线后,在习题中出现了以下一题:
过抛物线y2=2px 焦点的一条直线和这条抛物线相交,设两个交点纵坐标为y1,y2,求证:y1y2=-p2。(设线段AB为过抛物线焦点的弦)
此题证明并不难,但其结论却很有用,关键是运用其结论。在布置此题给学生时我们便可以有针对性的演变。如变成
(1)证明:过抛物线焦点弦两端点的切线与抛物线的准线,三点共线。
(2)证明:抛物线焦点弦中点与其端点切线的交点的连线,平行于抛物线的对称轴。
(3)证明:抛物线焦点弦中点与其端点切线的交点连结线段,等于焦点弦长的一半,并且被这条抛物线平分。
另外,我们还可以让学生自己变式,便还可能出现如下变式:
(4)证明:抛物线焦点弦两端点的切线互相垂直。
(5)证明:抛物线的准线是其焦点弦两端点的切线的交点的轨迹。
(6)证明:过抛物线焦点一端,作准线的垂线,那么垂足、原点以及弦的另一端点,三点共线。
在数学习题教学中,一题多变也得循序渐进,步子要适宜,变得自然流畅,使学生的思维得到充分发散,而又不感到突然。
参考文献:
[1]陈峰.高中数学课堂有效性教学的案例研究[J].读与写(教育教学刊),2019,16(08):87.
[2]胡扬道.加强高中数学实践 开展课堂有效教学[J].读与写(教育教学刊),2019,16(08):90.
关键词:一题多解;基本思想;练习和习题
对于传统的数学教学来说,教学过程的重点不外乎为:讲解定义推导公式,例题演练,练习,及习题的安排。下面就一题多解与一题多变在教学中的运用谈谈我个人的几点看法。
一、在例题讲解中运用一题多解和一题多变
在例题讲解中运用一题多解和一题多变,就不用列举大量的例题让学生感到无法接受。而是从一个题中获得解题的规律,技巧,从而举一反三。
下面仅举一例进行一题多解和一题多变来说明:
例:已知x、y≥0且x+y=1,求x2+y2的取值范围。
解答此题的方法比较多,下面给出几种常见的思想方法,以作示例。
解法一:(函数思想)由x+y=1得y=1-x,则
x2+y2= x2+(1-x)2=2x2-2x+1=2(x-1/2)2+1/2
由于x∈[0,1],根据二次函数的图象与性质知
当x=1/2时,x2+y2取最小值1/2;当x=0或1时,x2+y2取最大值1。
评注:函数思想是中学阶段基本的数学思想之一,揭示了一种变量之间的联系,往往用函数观点来探求变量的最值。对于二元或多元函数的最值问题,往往是通过变量替换转化为一元函数来解决,这是一种基本的数学思想方法。解决函数的最值问题,我们已经有比较深的函数理论,函数性质,如单调性的运用、导数的运用等都可以求函数的最值。
解法二:(三角换元思想)由于x+y=1,x、y≥0,则可设
x=cos2θ,y=sin2θ 其中θ∈[0,π/2]
则x2+y2= cos4θ+sin4θ=(cos2θ+sin2θ)2-2 cos2θsin2θ
=1-1/2(2sinθcosθ)2=1-1/2sin22θ
=1-1/2×(1-cos4θ)/2=3/4+ 1/4cos4θ
于是,当cos4θ=-1时,x2+y2取最小值1/2;
当cos4θ=1时,x2+y2取最小值1。
评注:三角换元思想也是高中数学的基本思想方法之一,通过三角换元就将问题转化为三角恒等式变形后来解决,而三角恒等变形却有着一系列的三角公式,所以运用三角换元解决某些问题往往比较方便。
解法三:(对称换元思想)由于x+y=1,x、y≥0,则可设
x=1/2+t, y=1/2-t,其中t∈[-1/2,1/2]
于是,x2+y2= (1/2+t)2+(1/2-t)2=1/2+2t2 t2∈[0,1/4]
所以,当t2=0时,x2+y2取最小值1/2;当t2=1/4时,x2+y2取最大值1。
评注:对称换元将减元结果进行简化了,从而更容易求最值。
这三种方法,在本质上都一样,都是通过函数观点来求最值,只是换元方式的不同而已,也就导致了化简运算量大小不同,教师通过引导、启发学生主动思考、运用,提高了学生对数学的认识,也增强了学生思维能力的提高。
解法四:(运用基本不等式)由于x、y≥0且x+y=1
则 xy≤(x+y)2/4=1/4,从而0≤xy≤1/4
于是,x2+y2=(x+y)2-2xy=1-2xy
所以,当xy=0时,x2+y2取最大值1;当xy=1/4时,x2+y2取最小值1/4。
评注:运用基本不等式可以解决一些含有两个未知量的最值问题,但要注意等号成立的条件是否同时满足。
這样一个由特殊性逐步一般化的思维过程,加强了学生思维能力的培养,通过这样一系列的一题多解和一题多变,培养了学生的综合分析能力、提高了学生数学思维能力,渗透了一些数学方法,体现了一些数学思想,也提供了一个推向一般性的结论。在数学教学中,若将经典例题充分挖掘,注重对例题进行变式教学,不但可以抓好基础知识点,还可以激发学生的探求欲望,提高创新能力;不仅能让教师对例题的研究更加深入,对教学目标和要求的把握更加准确,同时也让学生的数学思维能力得到进一步提高,并逐渐体会到数学学习的乐趣。当然,在新课的教学中有些方法所用的知识,学生还未学到,此时,我们可从中挑选学生学过的知识。其他方法可在今后的总复习中给出。
二、在练习和习题中训练学生运用一题多解和一题多变
在数学教学中,很多老师在课后给学生布置除书上练习题和习题以外的大量习题。使学生感到负担很重。我们为什么不能从书上的习题入手,进行演变,逐渐加深。让学生有规律可寻,循序渐进。日积月累过后,学生解题能力自然提高,对于从未见过的新题也会迎刃而解。这样的作业方式不只可以达到复习巩固的目的,还可以提高学生的探究能力及学习数学的兴趣。
例如,在学习抛物线后,在习题中出现了以下一题:
过抛物线y2=2px 焦点的一条直线和这条抛物线相交,设两个交点纵坐标为y1,y2,求证:y1y2=-p2。(设线段AB为过抛物线焦点的弦)
此题证明并不难,但其结论却很有用,关键是运用其结论。在布置此题给学生时我们便可以有针对性的演变。如变成
(1)证明:过抛物线焦点弦两端点的切线与抛物线的准线,三点共线。
(2)证明:抛物线焦点弦中点与其端点切线的交点的连线,平行于抛物线的对称轴。
(3)证明:抛物线焦点弦中点与其端点切线的交点连结线段,等于焦点弦长的一半,并且被这条抛物线平分。
另外,我们还可以让学生自己变式,便还可能出现如下变式:
(4)证明:抛物线焦点弦两端点的切线互相垂直。
(5)证明:抛物线的准线是其焦点弦两端点的切线的交点的轨迹。
(6)证明:过抛物线焦点一端,作准线的垂线,那么垂足、原点以及弦的另一端点,三点共线。
在数学习题教学中,一题多变也得循序渐进,步子要适宜,变得自然流畅,使学生的思维得到充分发散,而又不感到突然。
参考文献:
[1]陈峰.高中数学课堂有效性教学的案例研究[J].读与写(教育教学刊),2019,16(08):87.
[2]胡扬道.加强高中数学实践 开展课堂有效教学[J].读与写(教育教学刊),2019,16(08):90.