论文部分内容阅读
The aim of this study was to improve the capacity for crack-repair in concrete by developing a new way. The self-healing agent based on biological carbonate precipitation was developed. Crack-healing capacity of the cement paste specimens with this biochemical agent was researched. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the precipitation in cracks. The healing efficiency was evaluated by measuring the water permeability after crack healing as well.The experimental results show that the applied biochemical agent can successfully improve the self-healing capacity of the cement paste specimens as larger cracks can be healed. The cracks with a width of 0.48 mm in the specimens with the biochemical agent are nearly fully healed by the precipitation after 80d repair. SEM and XRD analysis results demonstrate that the white precipitation in cracks is calcium carbonate, which displays spherical crystal morphology. Meanwhile, the water permeability test result shows that the biochemical agent can significantly decrease the water permeability of the cement paste specimens, the water permeability of specimens with the biochemical agent respectively decreases by 84%and 96%after 7 d and 28 d immersion in water, however the control specimens only respectively decrease by 41%and 60%, which indicates that the bacteria-based concrete appears to be a promising approach to increase concrete durability.