论文部分内容阅读
传统最小二乘支持向量机拟合模型(Least squares support vector machine model,LSSVM)在进行矿区地表沉降GPS高程拟合时精度较低,为进一步提升矿区地表沉降监测精度,采用协同量子粒子群算法(Cooperative quantum-behaved particle swarm optimization,CQPSO)对LSSVM模型进行了优化。该算法的协同搜索策略是在解空间中使用多个子群取代整个种群,可有效解决由于单个种群、单个搜索策略导致的迭代后期种群多样性下