论文部分内容阅读
化倍角为半角,扩半角为倍角,可构造等腰三角形,从而顺利求解与二倍角相关的线段和差问题.
[问题探究]
例 在△ABC中,AD⊥BC,∠ABC = 2∠C,求证:AB + BD = CD.
解法1:如图1,在DC上截取DE = BD,连接AE.
易证△ABD ≌ △AED,∴∠B = ∠AED.
∵∠B = 2∠C,∴∠AED = 2∠C.
∵∠C + ∠CAE = ∠AED,∴∠C = ∠EAC,∴AE = CE.
∵AB = AE,∴AB = CE,∴AB + BD = CE + DE = CD.
应对策略:作半角为底角的等腰三角形,由三角形的外角可得倍角.
解法2:如图2,反向延长BD,截取BE = AB,连接AE.
∵∠E + ∠EAB = ∠ABD,∠ABC = 2∠C,∴∠C = ∠E,
∵AD⊥BC,∴∠ADE = ∠ADC = 90°,
易证△AED ≌ △ACD,
∴DE = CD,∴AB + BD = BE + BD = DE = CD.
应对策略:反向延长倍角的一边,构造等腰三角形后可得半角,再证两三角形全等.
解法3:如图3,延长AB,截取BE = BD,连接DE,在AC上取点F,使DF = AD.
∴∠E = ∠BDE,∵∠E + ∠BDE = ∠ABD,∠ABC = 2∠C,∴∠C = ∠E.
设∠C = α,∵AD⊥BC,∴∠DAC = 90° - α,
∴∠DAF = ∠DFA = 90° - α,∠DFC = 90° + α,
∴∠ADE = 90° + ∠BDE = 90° + α = ∠DFC,易證△ADE ≌ △DFC,
∴AE = DC,∴AB + BD = CD.
应对策略:构造以倍角为外角的等腰三角形,转化出半角.
解法4:如图4,在DC上截取DF = AB,过点D作DE = AD,交AC于点E,连接EF.
设∠C = α,∵AD⊥BC,∴∠DAC = 90° - α,
∴∠DAC = ∠DEA = 90° - α,∠ADE = 180° - ∠DAE - ∠DEA = 2α,
∴∠EDF = 90° - 2α.
∵∠BAD = 90° - 2α,∴∠BAD = ∠EDF,
∴△ADB ≌ △DEF(SAS),∴∠EFD = ∠B = 2α,EF = BD.
∵∠C + ∠CEF = ∠EFD,∴∠C = ∠CEF = α,∴EF = CF.
∴CF = BD,∴AB + BD = DF + CF = CD.
应对策略:将AB边转移到DC边上,构造等腰三角形,于是产生了倍角. 也可在截取DF = AB后作∠EDF = ∠BAD,交AC于点E,连接EF,构造全等三角形.
解法5:如图5,过点B作BH平分∠ABD,交AD于点H,
在AC上截取EC = BH,在CD上截取CF = AB,连接EF,
延长EF,交AD 的延长线于点G,易证△ABH ≌ △FCE.
设∠C = α,∵AD⊥BC,∴∠BAD = 90° - 2α,
∴∠BAD = ∠EFC = 90° - 2α,
∴∠FEA = ∠CFE + ∠C = 90° - α.
∵∠DAC = 90° - α,∴∠GAC = ∠GEA,∴AG = GE.
∵在△AGE中,∠GAE + ∠G + ∠GEA = 180°,∴∠G = 2α,
∵AH = EF,∴GH = GF,∴∠GHF = 90° - α.
∵∠BHD = 90° - ∠HBD = 90° - α,可证△BHD ≌ △FHD,∴BD = DF,∴AB + BD = CF + DF = CD.
应对策略:作倍角的角平分线得到半角,再构造全等三角形易求解.
[跟踪检测]
如图6,在△ABC中,AD平分∠BAC,∠ABC = 2∠C. 求证:AC = AB + BD.
[模型呈现]
求解与二倍角相关的数学问题时,通常可构造如下基本模型.
模型1:如图7,作∠EDC = ∠C,交AC于点E.
模型2:如图8,延长AB,在延长线上截取BF = BD,连接DF.
模型3:如图9,延长CB,在延长线上截取BE = AB,连接AE.
模型4:如图10,作∠ABC的平分线,交AD于点G,交AC于点E,作∠FGB = ∠ABE,交AB于点F.
(作者单位:大连市第37中学)
[问题探究]
例 在△ABC中,AD⊥BC,∠ABC = 2∠C,求证:AB + BD = CD.
解法1:如图1,在DC上截取DE = BD,连接AE.
易证△ABD ≌ △AED,∴∠B = ∠AED.
∵∠B = 2∠C,∴∠AED = 2∠C.
∵∠C + ∠CAE = ∠AED,∴∠C = ∠EAC,∴AE = CE.
∵AB = AE,∴AB = CE,∴AB + BD = CE + DE = CD.
应对策略:作半角为底角的等腰三角形,由三角形的外角可得倍角.
解法2:如图2,反向延长BD,截取BE = AB,连接AE.
∵∠E + ∠EAB = ∠ABD,∠ABC = 2∠C,∴∠C = ∠E,
∵AD⊥BC,∴∠ADE = ∠ADC = 90°,
易证△AED ≌ △ACD,
∴DE = CD,∴AB + BD = BE + BD = DE = CD.
应对策略:反向延长倍角的一边,构造等腰三角形后可得半角,再证两三角形全等.
解法3:如图3,延长AB,截取BE = BD,连接DE,在AC上取点F,使DF = AD.
∴∠E = ∠BDE,∵∠E + ∠BDE = ∠ABD,∠ABC = 2∠C,∴∠C = ∠E.
设∠C = α,∵AD⊥BC,∴∠DAC = 90° - α,
∴∠DAF = ∠DFA = 90° - α,∠DFC = 90° + α,
∴∠ADE = 90° + ∠BDE = 90° + α = ∠DFC,易證△ADE ≌ △DFC,
∴AE = DC,∴AB + BD = CD.
应对策略:构造以倍角为外角的等腰三角形,转化出半角.
解法4:如图4,在DC上截取DF = AB,过点D作DE = AD,交AC于点E,连接EF.
设∠C = α,∵AD⊥BC,∴∠DAC = 90° - α,
∴∠DAC = ∠DEA = 90° - α,∠ADE = 180° - ∠DAE - ∠DEA = 2α,
∴∠EDF = 90° - 2α.
∵∠BAD = 90° - 2α,∴∠BAD = ∠EDF,
∴△ADB ≌ △DEF(SAS),∴∠EFD = ∠B = 2α,EF = BD.
∵∠C + ∠CEF = ∠EFD,∴∠C = ∠CEF = α,∴EF = CF.
∴CF = BD,∴AB + BD = DF + CF = CD.
应对策略:将AB边转移到DC边上,构造等腰三角形,于是产生了倍角. 也可在截取DF = AB后作∠EDF = ∠BAD,交AC于点E,连接EF,构造全等三角形.
解法5:如图5,过点B作BH平分∠ABD,交AD于点H,
在AC上截取EC = BH,在CD上截取CF = AB,连接EF,
延长EF,交AD 的延长线于点G,易证△ABH ≌ △FCE.
设∠C = α,∵AD⊥BC,∴∠BAD = 90° - 2α,
∴∠BAD = ∠EFC = 90° - 2α,
∴∠FEA = ∠CFE + ∠C = 90° - α.
∵∠DAC = 90° - α,∴∠GAC = ∠GEA,∴AG = GE.
∵在△AGE中,∠GAE + ∠G + ∠GEA = 180°,∴∠G = 2α,
∵AH = EF,∴GH = GF,∴∠GHF = 90° - α.
∵∠BHD = 90° - ∠HBD = 90° - α,可证△BHD ≌ △FHD,∴BD = DF,∴AB + BD = CF + DF = CD.
应对策略:作倍角的角平分线得到半角,再构造全等三角形易求解.
[跟踪检测]
如图6,在△ABC中,AD平分∠BAC,∠ABC = 2∠C. 求证:AC = AB + BD.
[模型呈现]
求解与二倍角相关的数学问题时,通常可构造如下基本模型.
模型1:如图7,作∠EDC = ∠C,交AC于点E.
模型2:如图8,延长AB,在延长线上截取BF = BD,连接DF.
模型3:如图9,延长CB,在延长线上截取BE = AB,连接AE.
模型4:如图10,作∠ABC的平分线,交AD于点G,交AC于点E,作∠FGB = ∠ABE,交AB于点F.
(作者单位:大连市第37中学)