论文部分内容阅读
针对传统的不良图像自动过滤算法难以适用于复杂互联网环境的问题,提出一种通过构建类别空间进行多示例学习实现图像过滤的新算法.首先在YCgCr空间中扩展Hessian矩阵检测特征点作为图像的示例,然后定义YCgCr-LBP算子作为图像示例描述符,最后基于包示例频率统计原理提出类别空间模型,并利用余弦相似度完成图像识别.利用不同成分的数据集进行了多组实验对比,结果表明,所提出的算法克服了传统依靠皮肤比例方法对皮肤或类皮肤比例较大图像识别准确度较低的问题,同时也较一般的多示例学习方法对图像具有更好的描述能力