论文部分内容阅读
针对城镇森林交界域火灾烟雾视频检测准确率低问题,提出一种融合多项图像特征和深度学习的视频烟雾检测算法。通过Vi Be方法提取前景变化区域,根据烟雾模糊特征和角点信息排除部分纹理细节较明显的区域。在此基础上,以颜色特征为判据进一步缩小检测范围,使用累积帧差法排除运动刚体的干扰,利用深度学习模型识别目标是否为烟雾。采用级联分类器的方式设计整体算法,并使用并行计算技术进行实现。实验结果和工程案例表明,该算法能够实现城镇森林交界域火灾早期烟雾的精准识别。