论文部分内容阅读
In this paper we address the problem of audio-visual speech recognition in the framework of the multi-stream hidden Markov model. Stream weight training based on minimum classification error criterion is discussed for use in large vocabulary continuous speech recognition (LVCSR). We present the lattice re- scoring and Viterbi approaches for calculating the loss function of continuous speech. The experimental re- sults show that in the case of clean audio, the system performance can be improved by 36.1% in relative word error rate reduction when using state-based stream weights trained by a Viterbi approach, compared to an audio only speech recognition system. Further experimental results demonstrate that our audio-visual LVCSR system provides significant enhancement of robustness in noisy environments.
In this paper we address the problem of audio-visual speech recognition in the framework of the multi-stream hidden Markov model. Stream weight training based on minimum classification error criterion is discussed for use in large vocabulary continuous speech recognition (LVCSR). We present the lattice re- scoring and Viterbi approaches for calculating the loss function of continuous speech. The experimental re- sults show that in the case of clean audio, the system performance can be improved by 36.1% in relative word error rate reduction when using state- based stream weights trained by a Viterbi approach, compared to an audio only speech recognition system. Further experimental results demonstrate that our audio-visual LVCSR system provides significant enhancement of robustness in noisy environments.