【摘 要】
:
A Brain-Computer Interface(BCI)aims to produce a new way for people to communicate with computers.Brain signal classification is a challenging issue owing to th
【机 构】
:
Department of Electronic Engineering,Tsinghua University,Beijing 100084,China
论文部分内容阅读
A Brain-Computer Interface(BCI)aims to produce a new way for people to communicate with computers.Brain signal classification is a challenging issue owing to the high-dimensional data and low Signal-to-Noise Ratio(SNR).In this paper,a novel method is proposed to cope with this problem through sparse representation for the P300 speller paradigm.This work is distinguished using two key contributions.First,we investigate sparse coding and its feasibility for brain signal classification.Training signals are used to learn the dictionaries and test signals are classified according to their sparse representation and reconstruction errors.Second,sample selection and a channel-aware dictionary are proposed to reduce the effect of noise,which can improve performance and enhance the computing efficiency simultaneously.A novel classification method from the sample set perspective is proposed to exploit channel correlations.Specifically,the brain signal of each channel is classified jointly using its spatially neighboring channels and a novel weighted regulation strategy is proposed to overcome outliers in the group.Experimental results have demonstrated that our methods are highly effective.We achieve a state-of-the-art recognition rate of 72.5%,88.5%,and 98.5%at 5,10,and 15 epochs,respectively,on BCI Competition Ⅲ Dataset Ⅱ.
其他文献
孙庄遗址位于河南省郑州市中原区孙庄村南,是分布在黄河中下游地区的一处仰韶文化晚期遗存.通过对遗址出土的10例保存基本完整的颅骨进行测量与观察后,得出以下结论:孙庄组的
为了更容易地获取交通数据,实现车速预测,利用Python语言开发一套操作简单、界面友好的程序,实现路段车速数据采集、处理、分析、预测和发布过程的简捷和集成化。根据高德地图开发平台的操作指南,利用Python编写爬虫程序,完成数据采集;将采集的数据进行清洗、修复,提取出指定路段的时间序列车速数据;将时间序列进行分解,使用ARIMA模型进行预测;利用Qt Designer生成界面代码,将逻辑代码与界面
With the ever-increasing number of natural disasters warning documents in document databases,the document database is becoming an economic and efficient way for
为了获得容器内液体的晃动特性,采用数值模拟方法对正弦激励下矩形容器的晃动过程进行研究。通过用户自定义函数实现速度的加载,给定容器的刚体运动,通过计算结果与实验数据的对比验证数值方法的准确性;探究不同激励对矩形容器壁面受力及液面变化作用机制,揭示外部激励频率、激励幅值对液体晃动特性的影响规律。结果表明:一般情况下,液体晃动频率接近于外界激励频率,而当激励频率超过液体固有频率时,晃动频率会小于激励频率;液体晃动频率与外界激励幅值无关,晃动幅度随激励幅值的增大而增大;使外界激励频率远离液体固有频率,可有效抑制液
This paper addresses the Energy-Aware Distributed Hybrid Flow Shop Scheduling Problem with Multiprocessor Tasks(EADHFSPMT)by considering two objectives simultaneously,i.e.,makespan and total energy consumption.It consists of three sub-problems,i.e.,job as
以香菇菌丝体多糖含量及其生物合成相关酶的活性为研究指标,采用单因素实验和正交实验确定液体发酵的最佳条件,优化香菇菌丝体的培养工艺,找到控制菌丝体多糖生物合成代谢的关键酶。结果表明:香菇菌丝体最适碳源为40 g/L葡萄糖,最适氮源为10 g/L牛肉膏,最适发酵时间为5 d,最适pH值和培养温度为7和25℃。同时在不同发酵条件下培养香菇菌丝体,胞内葡萄糖激酶(GK)、磷酸葡萄糖变位酶(PGM)、UDP-葡萄糖焦磷酸化酶(UGP)、磷酸葡萄糖异构酶(PGI)和UDP-葡萄糖脱氢酶(UGD)活性随着多糖含量的增加
针对冰雹监测难和冰雹灾情不易估计的问题,结合声信号的时域、频域特点,采用时域、频域和小波域相结合的特征提取方法,将熵值法与广义回归神经网络(GRNN)相结合,提出一种基于熵值法特征筛选的GRNN降雹识别方法。对采集的降雹和降雨声信号提取时域特征、频域特征和小波包能量谱特征,采用熵值法确定各特征的权重大小,剔除权重较小的特征项并进行特征融合组成新的特征子集,将特征子集输入GRNN进行预测识别。试验结果表明,该方法能够有效识别冰雹,且特征筛选后的识别率高达97.8276%,相较未进行特征筛选的特征集,识别率提
Graph clustering,i.e.,partitioning nodes or data points into non-overlapping clusters,can be beneficial in a large varieties of computer vision and machine learning applications.However,main graph clustering schemes,such as spectral clustering,cannot be a
Recently,10 Gbps or higher speed links are being widely deployed in data centers.Novel high-speed packet I/O frameworks have emerged to keep pace with such high
大辛庄遗址位于济南市历城区大辛庄村,是山东省内已知面积最大的一处商代遗址,甲骨文及其他丰富遗存的出土对于鲁北及整个山东地区商文化研究具有重要意义.本文主要从人骨的