论文部分内容阅读
自适应方向提升小波变换(ADL)利用图像纹理特征进行变换编码,从而获得更高的编码质量,但同时也增加了计算复杂度。为了提高图像编码速率,在统一计算设备架构(CUDA)的图形处理器(GPU)上,提出一种并行实现ADL中的插值和方向变换计算的新方案,对插值部分同时采用粗粒度和细粒度的并行,即把图像数据分成若干个块进行粗粒度的并行,而对块中的每个像素点采用细粒度的并行。对变换部分中的9个变换方向采用粗粒度的并行。实验表明,在GPU上并行实现ADL变换是CPU实现的4倍左右,CPU-GPU整体架构下的ADL变