论文部分内容阅读
围绕上下文感知推荐技术和社会化网络推荐技术的局限性展开研究,提出一种基于社会化网络环境下的名为HCCF的上下文感知协同过滤方法。在充分考虑上下文感知推荐系统实际问题的基础上,首先量化了不同维度的上下文对推荐系统所产生的影响,并在此基础上定义了上下文影响系数。在此基础上引入了社会化网络环境中不同用户之间的相互影响,并采用社会化网络用户信任度进行衡量,最后对上下文因素和社会化网络用户信任度进行综合考虑,提出一种新的相似度计算方法。理论分析和在真实数据集上的实验结果表明,相对于单纯基于上下文的系统过滤算法