基于地基微波辐射观测的土壤水分反演算法评估

来源 :遥感技术与应用 | 被引量 : 2次 | 上传用户:gameboy13888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当前常用的被动微波土壤水分反演算法有水平极化单通道算法、垂直极化单通道算法、双通道算法、微波极化差比值算法和扩展双通道算法,5种反演算法具有不同的差异,对这些反演算法进行系统的评估和分析将有助于反演算法的改进和星载高精度土壤水分产品的发布。为了避免直接采用卫星产品验证时的尺度匹配、空间异质性等问题,基于地基L波段微波辐射观测以及配套的土壤和植被参数测量数据,对这5种反演算法进行了实现、对比和分析,得出以下结论:①单通道算法具有最佳的反演性能,水平极化单通道算法反演结果具有最高的相关性(相关性系数R=
其他文献
未冻水和冰共同存在于冻土中,两者的相互转化即冻融变化深刻影响寒区地表水分循环和能量收支。被动微波遥感技术是土壤水分监测的主要手段,但目前大多应用于非冻结土壤的水分反演,对负温环境下冻结土壤中未冻水的反演研究较少。基于SMAP卫星升轨和降轨时刻的亮温观测数据和经改进后适用于青藏高原地区的零阶微波辐射模型,利用单通道算法(SCA)和双通道算法(DCA),对青藏高原东部黄河源区玛曲区域季节冻土中的未冻水
土壤水分是陆地表层系统中的关键变量。利用主动微波遥感,特别是合成孔径雷达(Synthetic Aperture Radar,SAR)的观测,在监测和估计表层土壤水分时空分布方面已开展了诸多研究。然而,SAR土壤水分反演仍存在诸多挑战,特别是地表粗糙度和植被的影响。因此,本文提出了一种结合主动微波和光学遥感的优化估计方案,旨在同步反演植被含水量、地表粗糙度和土壤水分。反演算法首先在水云模型的框架下对