论文部分内容阅读
针对航空发动机中介轴承振动信号故障微弱,故障特征难提取的问题,提出了基于固有时间尺度分解(ITD)和近似熵(AE)结合随机森林(RF)的航空发动机中介轴承故障诊断方法。首先,利用航空发动机中介轴承试验台模拟并采集轴承在正常、外圈故障、滚动体故障三种状态下的振动信号;然后通过ITD方法将非平稳、非线性的中介轴承振动信号分解成一组固有旋转分量(PR),计算其近似熵;最后,将不同尺度的近似熵值作为特征向量,输入到随机森林分类器模型中进行分类识别与故障诊断。研究表明,该方法能有效提取出机匣表面振动信号中微弱的中介