论文部分内容阅读
航天器高精度姿态控制容易受到参数误差的影响,自适应控制能够合理地估计参数,使基于模型的控制器设计易于实现。自适应参数分为主星体惯量、变速控制力矩陀螺框架转子惯量及动摩擦系数3组,按参数分组对带变速控制力矩陀螺的航天器详细动力学模型进行变换,采用Lyapunov方法设计出姿态控制器、变速控制力矩陀螺群操纵律及参数自适应更新律,操纵律中引入加权矩阵以缓解陀螺奇异问题。理论分析和数值仿真表明闭环姿态控制系统全局一致最终有界稳定,参数自适应更新能有效减小角速度跟踪误差,使姿态四元数误差收敛更快。参数估计虽然不能准确收敛到其真值上,但均在可接受的范围内。
Spacecraft high-precision attitude control is easily affected by parameter errors. Adaptive control can reasonably estimate parameters and make model-based controller design easy to implement. The adaptive parameters are divided into three groups: the inertia of main body, rotor inertia and dynamic friction coefficient of variable speed control moment gyroscope frame, the detailed dynamics model of spacecraft with variable speed control moment gyroscope is transformed by parameter grouping, the attitude controller is designed by Lyapunov method, Variable speed control gyroscopic group swings law and parameter updating law, steering law to introduce weighted matrix to alleviate the problem of gyroscopic singularity. The theoretical analysis and numerical simulation show that the closed-loop attitude control system is globally uniform and ultimately bounded. The parameter adaptive updating can effectively reduce the angular velocity tracking error and make the attitude quaternion error converge faster. Parameter estimation can not accurately converge to its true value, but are within the acceptable range.