论文部分内容阅读
A laser frequency comb with several tens GHz level is demonstrated,based on a Yb-doped femtosecond fiber laser and two low-finesse Fabry-Perot cavities(FPCs) in series.The original 250-MHz mode-line-spacing of the source comb is filtered to 4.75 GHz and 23.75 GHz,respectively.According to the multi-beam interferences theory of FPC,the side-mode suppression rate of FPC schemes is in good agreement with our own theoretical results from 27 dB of a single FPC to43 dB of paired FPCs.To maintain long-term stable operation and determine the absolute frequency mode number in the23.75-GHz comb,the Pound-Drever-Hall(PDH) locking technology is utilized.Such stable tens GHz frequency combs have important applications in calibrating astronomical spectrographs with high resolution.
A laser frequency comb with several tens GHz level is demonstrated, based on a Yb-doped femtosecond fiber laser and two low-finesse Fabry-Perot cavities (FPCs) in series. The original 250-MHz mode-line-spacing of the source comb is filtered to 4.75 GHz and 23.75 GHz, respectively. According to the multi-beam interferences theory of FPC, the side-mode suppression rate of FPC schemes is in good agreement with our own theoretical results from 27 dB of a single FPC to 43 dB of paired FPCs.To maintain long-term stable operation and determine the absolute frequency mode number in the 23.75-GHz comb, the Pound-Drever-Hall (PDH) locking technology is utilized .uch stable tens GHz frequency combs have important applications in calibrating astronomical spectrographs with high resolution.