论文部分内容阅读
提出了一种新的支持向量(SupportVectorMachines,SVM)回归的快速图像匹配方法。该方法将匹配模板图像中每个像素的位置坐标和灰度信息作为训练样本,通过选择合适的模型参数,进行SVM回归训练,获得少量的支持向量。依据SVM位置坐标对模板图像进行像素抽样,实现匹配数据的有效压缩。定义了图像支持特征向量,用少量的特征数据描述整幅图像变化的结构信息,保证了匹配数据的置信度。采用相关系数作为相似性测度,实现互相关匹配。实验结果显示,在一幅100×100的光学图像中提取85个支持特征向量点作为