论文部分内容阅读
商空间方法是粒计算领域处理复杂问题求解的重要方法,其精髓在于运用保真保假定理对粒度空间的分层递阶诱导.合理高效地对无线传感器网络的分簇以延长网络寿命是近年来普遍认为的一个复杂问题.本文主要运用能量保假原理和分层递阶的思想逐层建立合理的分簇,对节点传输能量消耗进行优化,然后确定每个传感器节点到簇头和基站的传输路径.由此建立了基于商空间的WSN粒度模型,并提出了基于商空间的WSN动态拓扑分簇路由算法(QSRA),同时在此基础上研究了基于商空间的WSN动态拓扑多跳分簇路由算法(QSRA-M).算法中WSN的分簇形态可以动态适应网络能量消耗,使得节点能量消耗分布更合理.MATLAB仿真实验表明,与经典的分簇路由算法相比,该算法能够有效延长网络生命周期,同时体现了商空间理论在该领域的实际应用价值.
The quotient space method is an important method to deal with complex problems in the field of granular computing, and its essence lies in the hierarchical and hierarchical induction of granularity space using the fidelity leave-preserving theorem. In order to extend the network lifetime reasonably and efficiently for clustering wireless sensor networks in recent years Generally considered a complex issue.This paper mainly uses the principle of energy underfloor-protection and hierarchical and hierarchical thinking to establish reasonable clustering layer by layer to optimize the energy consumption of node transmission and then determine the transmission from each sensor node to cluster head and base station This paper establishes a WSN granularity model based on quotient space and proposes a WSN Dynamic Topology Clustering Routing Algorithm (QSRA) based on quotient space. At the same time, based on the quotient space, the WSN dynamic topology multi-hop clustering Routing algorithm (QSRA-M) .The clustering morphology of WSN in the algorithm can dynamically adapt to the network energy consumption and make the node energy consumption distribution more reasonable.MATLAB simulation results show that compared with the classical clustering routing algorithm, the algorithm can effectively extend Network life cycle, at the same time reflects the commercial space theory in the field of practical application value.