论文部分内容阅读
目的随着自动驾驶技术不断引入生活,机器视觉中道路场景分割算法的研究已至关重要。传统方法中大多数研究者使用机器学习方法对阈值分割,而近年来深度学习的引入,使得卷积神经网络被广泛应用于该领域。方法针对传统阈值分割方法难以有效提取多场景下道路图像阈值的问题和直接用深度神经网络来训练数据导致过分割严重的问题,本文提出了结合KSW(key seat wiper)和全卷积神经网络(FCNN)的道路场景分割方法,该方法结合了KSW熵法及遗传算法,利用深度学习在不同场景下的特征提取,并将其运用到无人驾驶技术的道路分