【摘 要】
:
Severe plastic deformation is known to induce grain refinement and gradient structure on metals\'sur-faces and improve their mechanical properties.However,the fundamental mechanisms behind the grain refinement and micromechanical properties of materials
【机 构】
:
College of Civil Aviation,Northwestern Poly technical University,Xi’an,710072,China;Key Laboratory f
论文部分内容阅读
Severe plastic deformation is known to induce grain refinement and gradient structure on metals\'sur-faces and improve their mechanical properties.However,the fundamental mechanisms behind the grain refinement and micromechanical properties of materials subjected to severe plastic deformation are not still well studied.Here,ultrasonic surface rolling process(USRP)was used to create a gradient microstructure,consisting of amorphous,equiaxed nano-grained,nano-laminated,ultrafine laminated and ultrafine grained structure on the surface of TB8 β titanium alloy.High energy and strain drove element co-segregation on sample surface leading to an amorphous structure during USRP processing.In situ transmission electron microscope compression tests were performed in the submicron sized pillar extracted from gradient structure and coarse grain,in order to reveal the micromechanics behavior of different grain morphologies.The ultrafine grained layer exhibited the lowest yield stress in comparison with single crystal and amorphous-nanocrystalline layers;the ultrafine grained layer and single crystal had an excellent strain hardening rate.The discrepancy among the grain sizes and activated dislocation sources led to the above mentioned different properties.Dislocation activities were observed in both compression test and microstructure evolution of USRP-treated TB8 alloy.An evolution of dislocation tangles and dislocation walls into low angle grain boundaries and subsequent high angle grain bound-aries caused the grain refinement,where twinning could not be found and no phase transformation occurred.
其他文献
Ferrite/carbon composited materials,especially the bio-derived composited materials possessing both environmental friendliness and outstanding microwave absorption performance,attract numerous attentions for solving the“electromagnetic problem”in the Giga
Sodium ion battery(SIB)is considered as the potential alternative for next generation energy system to succeed the lithium ion battery(LIB)due to the low price and vast abundance of Na resource.Ternary metal sulfide is identified as an important redox con
The effects of Zn/Mg ratios on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys aged at 150℃ have been investigated by using tensile tests,optical metallography,scanning electron microscopy,transmission electron microscopy and atom probe tom
Due to its appropriate bandgap(~2.4 eV)and efficient light absorption,bismuth vanadate(BiVO4)shows promising photocatalysis activity.However,the charge carrier recombination and poorelectron transmis-sion often induce poor photocatalytic performance.Herei
A high-throughput approach based on magnetron co-sputtering of alloy libraries is employed to inves-tigate mechanical properties of crystalline and amorphous alloys in a ternary palladium(Pd)-tungsten(W)-silicon(Si)system with the aim to reveal the differ
In the present work,the microstructure features,martensitic transformation,mechanical properties and strain recovery characteristics of Ti-Ta based shape memory alloys were tailored by changing Hf contents.The single α\"martensite phase was dominated in
Lattice thermal conductivities of zirconium carbide(ZrCx,x=1,0.75 and 0.5)ceramics with different car-bon vacancy concentrations were calculated using a combination of first-principles calculations and the Debye-Callaway model.The Grüneisen parameters,Deb
FCC,BCC and B2 phases,the most common phases in high-entropy alloys(HEAs),are widely investigated to tailor their mechanical and magnetic performances.The detailed investigation of FCC to BCC/B2 phase transformation of AlCoCrFeNi HEA in this paper reveals
Chemo-resistance has pushed cancer treatment to the boundary of failure.This challenge has encouraged scientists to look for nanotechnological solutions.In this study,we have taken this goal one step further without depending on chemotherapy.Specifically,
The understanding of temperature and time-dependent metal borides precipitation/dissolution is cru-cial for the design of the transient liquid phase(TLP)bonding process of Ni-based alloys.It however remains elusive despite substantial research efforts for