论文部分内容阅读
为了提高BP神经网络模型对海洋藻类生长状态软测量的准确性,提出了一种基于遗传优化算法优化BP神经网络的软测量方法。利用遗传算法优化BP神经网络的权值和阈值,然后训练BP神经网络预测模型以求得最优解,再将该预测结果与传统BP网络预测模型的预测结果进行对比。对仿真结果进行有效性验证后,结果表明,通过这种软测量方法,经遗传算法优化后的BP神经网络可以在更短的时间里创造更高的预测准确性,大大提高了对海洋藻类生长状态预测的效率。