论文部分内容阅读
构造了一类含自由参数ω≠0的精确指数拟合的一级Runge-Kutta方法,若ω→0,当c1=0,这类方法是显示的单步Euler方法,是一阶收敛的;当c1=1/2,这类方法是隐式的中点公式,是二阶收敛的;当c1=1,这类方法是隐式的向后Euler方法,是一阶收敛的.它们都是L-稳定的.根据估计局部截断误差,给出了自动控制步长选择最优参数ω的算法,并给出数值算例证明所提出方法的优越性.