论文部分内容阅读
传统的基于最大似然估计高斯混合模型参数的方法是一种无导师的学习方法.该方法的主要缺点是学习算法在估计一类模式模型中的参数时只利用了该类模式中的训练样本,而未考虑其他类训练样本分布的影响,因此,这种方法的识别效果往往不够理想.该文提出了利用最大交叉熵估计高斯混合模型参数的方法,这种方法考虑了不同类之间的样本区分性.同时,为了提高获得全局最优解的可能性,文章给出一种利用进化规划求解最优参数的算法,并将这种方法用于非限定文本的话者识别.实验表明,该方法比传统的参数估计方法识别效果要好