论文部分内容阅读
The weldability of 0.28C–2.0Mn–0.93Al–0.97Si (wt.%) transformation induced plasticity (TRIP) steels was investigated using a 2.5 kW CO2 laser at the welding speeds of 2, 2.5 and 3 m/min. The welded joints were characterized in terms of hard-ness, tensile properties and microstructure. High-quality welded joints of TRIP steels with the carbon equivalent of 0.7 were obtained. Lower loss of ductility, nearly unvaried hardness of the fusion zone (FZ) and tensile strength equal to the base metal were observed with increasing welding speed. Lath martensite and lower bainite formed in FZ and the microstructure of FZ varied little with welding speed. Weld thermal simulations of heat-affected zone (HAZ) were carried out using a quenching dilatometer, and the microstructures of dilatometric samples revealed the carbon diffusion-controlled transformations in HAZ. The microstructure distribution of HAZ could be influenced by the welding speed due to the significant temperature gradient over the narrow HAZ.