Stabilizing the MAPbI3 perovksite via the in-situ formed lead sulfide layer for efficient and robust

来源 :能源化学 | 被引量 : 0次 | 上传用户:new_fisher
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Surface passivation via post-treatment with organic reagents is a popular strategy to improve the stability and efficiency of perovskite solar cell.However,organic passivation still suffers from the weak bonding between organic chemicals and perovskite layers.Here we reported a facile inorganic layer passivating method containing strong Pb-S bonding by using ammonium sulfide treatment.A compact PbSx layer was in-situ formed on the top surface of the perovskite film,which could passivate and protect the perovskite surface to enhance the performance and stability.Our novel inorganic passivation layer strategy demonstrates great potential for the development of high efficiency hybrid and robust perovskite optoelectronics.
其他文献
Precise control over the charge carrier dynamics throughout the device can result in outstanding performance of perovskite solar cells (PSCs).Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PE-DOT:PSS) is the most actively studied hole transport
Lithium-sulfur batteries (LSBs) are promising alternative energy storage devices to the commercial lithium-ion batteries.However,the LSBs have several limitations including the low electronic conductivity of sulfur (5 × 10-30 S cm-1),associated lithium po
The molten mixtures of alkali metal fluorides and aluminum fluoride are applied as aluminum electrolytes or brazing fluxes.However,the presence of Al2F7-in such molten systems is disputed.In the present study,MF-AlF3 (M =K,Cs) systems with molar ratios <
β-Ge3N4 loaded with nanoparticulate RuO2 as a cocatalyst is the first successful non-oxide photocatalyst for overall water splitting.To get an insight into the working mechanism of this particular photocatalytic system,we have calculated geometrical struc
Lithium-sulfur (Li-S) battery is a potential energy storage technology with high energy density and low cost.However,the gap between theoretical expectation and practical performance limits its wide implementation.Herein,we report a nitrogen-doped porous
Thermal runaway is the main factor contributing to the unsafe behaviors of lithium-ion batteries (LIBs) in practical applications.The application of separators for the thermal shutdown has been proven as an effective approach to protecting LIBs from therm
Lithium metal has a high theoretical capacity of 3860 mAh g-1 and a low electrochemical potential (-3.04V vs.H2/H+).Hence,using a lithium anode significantly improves the energy density of a secondary battery.However,the lithium dendrites generated on the
In this work,a comprehensive study on the deliberate molecular design and modifications of electron donors is carried out to elucidate correlations between the methoxy effects and donor configuration of hole-transporting materials (HTMs).Our initial findi
A series of CuO/Ce1-xZrxO2 catalysts (x =0.2,0.4,0.6 and 0.8) are applied to elaborate the effect of the Zr/Ce ratio on the catalytic performance of CO2 hydrogenation to CH3OH.The best catalytic performance is achieved with CuO/Ce0.4Zr0.6O2,exhibiting XCO
Silicon has a large impact on the energy supply and economy in the modern world.In industry,high purity silicon is firstly prepared by carbothermic reduction of silica with the produced raw silicon being further refined by a modified Siemens method.This p