论文部分内容阅读
分类是数据挖掘的重要任务之一.训练分类器的训练集可能是偏斜数据.传统分类算法处理偏斜训练集,通常会使少数类别样例的分类精度很低.已有的偏斜训练集平衡算法都是针对只有两种目标类的情况.为平衡拥有多种目标类的偏斜训练集,基于同类样例差异较小的思想给出SSGP算法,在同类样例附近增加少数类别样例,且使多种少数类别样例同速增加.并证明SSGP算法不会向数据集中添加噪声样例.为提高效率,用样例取模取代大量相异度计算.实验表明,只需执行一遍SSGP算法就能同时提高多种少数类别样例的分类精度.