基于历史数据聚类的火电机组工况划分

来源 :仪器仪表学报 | 被引量 : 0次 | 上传用户:nightcatwu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对调峰背景下火电机组非稳态工况增多, 以及常见运行工况偏离设计工况等问题, 提出了基于历史运行数据聚类的工况划分模型.首先, 考虑到运行数据中非稳态工况与稳态工况并存的情况, 以功率作为特征变量, 提出基于功率差值期望区间估计的稳态判别算法, 筛选出历史数据中的非稳态工况;其次, 由于稳态工况下外部边界条件变量的分布差异性, 提出改进的多步K-均值聚类算法进行稳态工况的划分, 并利用silhouette评价准则确定每步条件下的最佳聚类数;最后, 采用某实际发电用重型燃气轮机的历史运行数据进行模型验证.通过与传统K-均值聚类算法比较, 所提出的模型能够有效解决工况分类数目较少以及样本分布不均的问题.“,”Thermal power units have been widely put into operation for the electrical peak-shaving, which results in the increase of unsteady state operating conditions and the deviation of common operating conditions from design conditions. Thus, the operating condition classification model based on the historical data clustering is proposed in this work. Firstly, considering the co-existence of unsteady and steady state operating conditions, the output power is applied as the key indicator between the steady state and unsteady state. The interval estimation of expectation of the output power difference value is used to classify the historical data into the steady and unsteady samples. Then, due to the distribution difference among external boundary variables under the steady-state operating conditions, the improved multi-step K-means clustering algorithm is proposed. The optimal clustering number for each step is determined by using the silhouette evaluation criterion. Finally, a real heavy gas turbine is used to validate the established model. Compared with the traditional K-means clustering, the results prove that the proposed operating condition classification model can effectively solve the problems of less classifications of operating condition and uneven distribution of samples.
其他文献
结构参数误差使得测量臂在不同位置、不同构型下的精度呈现一定的规律。以六关节测量臂为研究对象,采用定积分法分析末端执行器位置精度与结构参数误差之间的关系,构建测量臂位置精度预测模型;并提出一套偏置正交测量臂前四关节的逆解算法,用于确定特定工作点下测量臂各种构型的位置精度分布情况,并给出构型灵活性、构型位置精度权重等评价指标。验证试验包括:比较不同工作点下构型灵活度情况;统计工作点下构型位置精度分布状
在铁磁性管道的远场涡流检测中,由于涡流信号会从激发线圈和接收线圈处2次穿透管壁,所以同一缺陷必然影响2次远场涡流信号的传输,其在接收信号中分别体现为主峰和伪峰.主峰包