论文部分内容阅读
朴素贝叶斯分类器是一种简单而高效的分类器,但需要属性独立性假设,无法表示现实世界中属性之间的依赖关系,影响了其分类性能。利用独立分量分析提升朴素贝叶斯分类性能,把样本投影到由独立分量所确定的特征空间,提高了朴素贝叶斯分类器的分类性能。实验结果表明,这种基于独立分量分析的朴素贝叶斯分类器具有良好的性能。