基于机器视觉的电池铅板栅缺陷监测系统设计

来源 :现代计算机 | 被引量 : 0次 | 上传用户:myg3801403
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于图像处理与机器视觉技术,设计了铅酸电池内部铅板栅冲压缺陷在线监测系统.同时对系统基本构成、工作原理以及部分关键图像技术进行了研究,主要包括现场图像的实时采集、图像的处理和图像的识别等.该系统的研究设计能够为电池生产企业在生产产能以及控制策略方面提供依据,有助于提高企业生产效率、提升产品质量.对其生产自动化改造进行研究,有着一定的理论意义和实践意义.
其他文献
为高职学校招生就业及人才培养方案的优化提供依据,提高高职学生就业率.利用决策树算法对高职学生的就业和成绩数据建立就业预测模型,挖掘影响学生就业的关键因素.利用决策树算法构建的就业预测模型的F值为0.9026,说明该模型对高职学生就业的预测效果较好.本模型能够较为准确地预测学生的就业状况,挖掘出高职学生就业的影响因素包括学生性别、民族、毕业时间和成绩等.
针对汽车电子车载雷达开发,提出了一种基于数字波束形成(DBF)原理进行波达方向估计(DOA)的方法.基于DBF的DOA估计方法,相对于经典的MUSIC算法,在车载多输入多输出(MIMO)雷达系统中具有算法复杂度低,能够在更短的时间里进行DOA估计的优势.角度分辨率相比于MUSIC算法也并没有明显损失,而且可以灵活调整.通过与MUSIC算法的对比,来说明基于DBF的DOA估计在实际应用中的优势.为相关的开发人员,提供了一种解决车载雷达测角的新思路.
遥感图像的融合是现在卫星影像处理的一项关键工作,由于卫星传感器的限制,通常生成两种图像,一种是具有多个光谱通道的低分辨率图像,另一种是单一通道的高分辨率灰度图像.为了能够得到多光谱的高分辨率的遥感图像,图像融合工作就变得尤为重要.随着深度学习的迅速发展,GAN(generative adver?sarial networks)逐渐被用于遥感图像融合.本文提出了基于GAN的遥感图像的融合模型,通过添加残差模块来提取更细致的上下文特征,从而得到更高质量的高分辨率遥感图像.实验结果表明,在两个常用数据集上与现有
ORB-SLAM是现代SLAM算法中最精确的算法之一,但该算法在相机剧烈运动或纹理缺失的场景中面临精度下降问题.对此,本文在ORB-SLAM基础上,提出一种基于地图融合的Mapfusion-SLAM算法,通过一种求绝对旋转的封闭解(closed-form solution of absolute orientation,CSAO)的方式,先计算出关键帧位姿之间的转换关系,再依据该转换关系实现地图融合,提高在困难场景中算法的建图精度和性能.最后,在公开数据集上进行试验,实验结果表明:该算法对建图精度有至少3
针对传统3D车道线检测算法在道路远处检测精度不佳的问题,提出了一种基于Transformer框架和卷积神经网络结合的3D车道线检测算法.该算法首先利用车载前景摄像头获取车辆视角的道路正视图,然后通过投影变换将正视图投影到俯视图视角,之后将不同视角和不同分辨率特征图融合之后作为Transformer网络输入.在Transformer网络中包含两个用于提取不同分辨率特征图的Transformer框架,用于实现对道路远处车道线的语义识别和精确定位,实现车道线的精准检测.实验结果表明,该方法在复杂道路场景下的3D
使用卷积神经网络在对视频流进行连续目标检测时,因光照和角度等环境的不确定因素会出现某一帧漏检、错检或多帧连续漏检的问题.针对这一问题,基于视频流中的时间相关性,提出一种基于时间相关性的置信度矫正算法,以显著降低目标漏检和错检率.该算法能够针对异常检测数据,使用指数平滑法对置信度较低的漏检目标进行预测矫正;对错检数据的置信度进行抑制.通过多个真实数据集的验证,结果表明,通过置信度矫正后的目标检测性能得到显著的提高,MAP平均提高了7.7%.
以闽北复杂山区典型岩茶种植区为研究对象,选用研究区域合适时间窗口的高分2号遥感卫星高分辨率数据,在对影像进行全色和多光谱影像融合的基础上,基于ENVI5.3软件采用了最小距离、最大似然、支持向量机以及面向对象等4种遥感影像分类方法,对影像地物进行了分类和茶园提取,并对实验结果进行了对比分析.结果显示4种分类方法中,基于规则的面向对象分类方法分类精度最高,总体精度和Kappa系数分别达到了97.66%和0.95,说明融合光谱和纹理等空间信息在复杂山区茶园提取应用中能有效提高分类精度,研究表明高空间分辨率遥感
机械设备的安全与维护长期以来一直是工业界重点关注的问题,航空发动机作为高精密度的机械设备,对其进行准确的剩余寿命预测是保障航空安全的重要前提.传统的剩余寿命预测方法受模型单一的选择影响明显,在预测结果上的准确性上比较低,并且处理数据的能力有限.因此本文将采用先进的机器学习里的LightGBM算法来进行剩余寿命预测,并且通过贝叶斯算法实现模型超参数的自动优化.实验结果表明,与MLP、XGBoost等算法相比,LightGBM在处理大量数据时有更强大的能力,并且在模型结构上更有深度,对发动机的剩余寿命预测表现
当今经济和社会不断发展,管理和保护唐卡信息越来越重要.为更方便地管理保护唐卡文本信息,需要进行唐卡领域文本分类.对于唐卡领域文本分类任务,首先提出使用BERT进行编码获得语句的上下文特征信息,再使用卷积神经网络提取语义的局部特征,最终通过全连接层进行分类.通过在唐卡领域文本数据集上进行实验,F1值达到90.54%,比TextCNN模型高出3.22%,比BERT模型高出1.99%.实验结果证明了BERT-CNN对于唐卡文本分类的有效性.
LoRa技术是一种新兴的无线网络技术,具有在相同的功耗环境下比其他无线方式传播信号距离更远的优势,实现了低功耗和远距离传输之间的统一.针对铝厂的强磁、高温、粉尘等环境因素会对电解铝槽测量温度造成较大影响,设计了一种基于LoRa的电解铝槽监测系统,可以监测温度、电压、电流.系统主要分为采集终端和云平台两部分.通过对系统测试后显示数据的验证,系统可以准确实时的对电解铝槽进行监控.系统的维护成本低,具有较高的使用价值和良好的使用前景.