基于支持向量机的肿瘤分类特征基因选取

来源 :计算机研究与发展 | 被引量 : 0次 | 上传用户:ag128333
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
依据基因表达谱有效建立肿瘤分类模型的关键在于准确找出决定样本类别的一组特征基因.针对该问题,在分析肿瘤基因表达谱特征的基础上,研究了肿瘤分类特征基因选取问题.首先,提出了一种新的类别可分性判据以滤除分类无关基因,并采用支持向量机作为分类器进行特征基因分类性能的检验.然后,采用两两冗余分析及基于支持向量机分类模型的灵敏度分析法进行冗余基因的剔除.以急性白血病亚型分类特征基因选取为例进行实验,结果表明了上述方法的可行性和有效性.
其他文献
控制流结构中并发变迁的正确性是工作流模型正确性的基础.为保证模型的正确性,提出了资源语义约束工作流网的基本概念,丰富了控制流的数据语义,给出了两方面的控制流并发正确