Controlling effects of the Ordovician carbonate pore structure on hydrocarbon reservoirs in the Tari

来源 :Petroleum Science | 被引量 : 0次 | 上传用户:skyaixiao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The Ordovician carbonate reservoirs in the Tarim Basin with secondary dissolution pores and vugs have complicated pore structures. The weathering crust reservoirs mainly consist of large cavities or vugs connected by fractures, but most of the reef-shoal reservoirs have complex and small throats among matrix pores. The pore structure can be divided into four types: big pore and big throat, big pore but small throat, small pore and small throat, and fracture type. Most of the average throat radius falls between 0.03 and 0.07 μm, close to that of unconventional reservoirs except in local areas with developed fractures. Fluid driving force analysis shows that the differentiation of fluid is mainly controlled by the throat radius in two kinds of mechanism separated by the critical throat radius about 0.1 μm. There is obvious fluid differentiation and oil/gas/water contact in fracture-cavity reservoirs with big throats. However, most of reservoirs under the critical throat radius have high capillary pressure, which resulted in incomplete differentiation of gas/oil/water, and complicated fluid distribution and fluid properties in the unconventional reservoirs. The Ordovician carbonate reservoirs in the Tarim Basin with secondary dissolution pores and vugs have complicated pore structures. The weathering crust reservoirs mainly consist of large cavities or vugs connected by fractures, but most of the reef-shoal reservoirs have complex and small throats among matrix pores . The pore structure can be divided into four types: big pore and big throat, big pore but small throat, small pore and small throat, and fracture type. Most of the average throat radius falls between 0.03 and 0.07 μm, close to that of unconventional reservoirs except in local areas with developed fractures. Fluid driving force analysis shows that the differentiation of fluid is mainly controlled by the throat radius in two kinds of mechanism separated by the critical throat radius about 0.1 μm. There is obvious fluid differentiation and oil / gas / water contact in fracture-cavity reservoirs with big throats. However, most of reservoirs under the critical throat radius have hig h capillary pressure, which resulted in incomplete differentiation of gas / oil / water, and complicated fluid distribution and fluid properties in the unconventional reservoirs.
其他文献
在教学改革飞速发展的今天,摆在每一位老师面前的问题是怎样让学生高效地获得新知,而在数学方面获取新知更显得尤为重要,那么什么样的教学策略最有效呢?现结合自己的教学经验
期刊
期刊
The main petroliferous basins in eastern China are Cenozoic fault basins, most of which have experienced two-stage tectonic evolution, i.e., rifting subsidence
期刊
通过对球罐支柱与球壳连接最低点a的局部应力分析、讨论,总结出了a点附近局部应力的分布和变化规律。并认为在球罐设计中,与支柱相连接的赤道板和其他球壳板宜采用不等厚度,
期刊
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊
期刊
期刊