论文部分内容阅读
为了提取高维人脸图像中的非线性特征,提出一种新的非线性降维方法:核邻域保持判别嵌入算法(KNP-DE).为了表示特征空间中类间邻域结构和不同类样本间的相似度,分别构建类内邻接矩阵和类间相似度矩阵.通过使用核技巧,KNPDE将邻域保持嵌入(NPE)和Fisher判别准则相结合,在保持特征空间中类内邻域结构的同时充分利用类间判别信息,从而具有更强的分类能力.在Yale和UMIST人脸库上的试验结果进一步表明了该算法的有效性.