论文部分内容阅读
针对GPS可降水量时间序列具有随机性和非线性的特点,利用遗传算法优化小波神经网络的输入参数,建立基于遗传小波神经网络的GPS可降水量预测模型。结果表明,遗传小波神经网络预测方法的均方根误差为0.124mm,平均绝对百分误差为0.167%,其精度相比BP神经网络和小波神经网络方法均有明显提高,能更好地反映可降水量的变化特征。