基于ANSYS的汽车轮毂的轻量化研究

来源 :农业装备与车辆工程 | 被引量 : 0次 | 上传用户:sh_xq
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
轮毂作为汽车的重要部件之一对舒适性有着很大的影响,它不仅要承受整车的重量,还要承受轮胎转动产生的水平作用力和路面激励的冲击等交变载荷.采用SolidWorks建立汽车轮毂的模型,首先在ANSYS中分别对钢制轮毂和铝合金制轮毂进行受力和模态分析,找出轮毂的固有频率和振型,并对它们的分析结果作对比,使轮毂结构避免产生共振,有利于提高轮毂的稳定性,提高汽车行驶的平顺性.由于铝合金的优异性能,在原来基础上对轮毂的尺寸进行了合理优化.优化分析结果显示,轮毂的质量减少了,在保证轮毂强度可靠性的前提下,实现了轮毂的轻量化.
其他文献
借助SolidWorks完善的二次开发功能,结合六自由度机械手臂的运动学逆解求解的理论研究,开发一种适用于大多数六自由度的机械手臂的逆解求解和运动仿真软件.首先运用基于三轴相交于一点的Pieper\'s solution解法来对机械手臂的运动学逆解进行求解,对于求解需要的矩阵则通过SolidWorks API中的矩阵相关函数来获取、计算;然后将求得的结果赋值给机械手臂模型中对应的角度来完成验证,对于一条连续的路径,则通过对路径上的每一点的计算、赋值,来验证规划所求得的路径的合理性.
基于MATLAB/Simulink建立电动汽车整车模型,并通过该模型选择工况特征参数进行工况的聚类分析,从而得到对应工况的能耗,最后根据剩余能量和能耗计算并由模型输出剩余里程.电池能量状态与能耗估计相结合不仅可以提高剩余里程估计的精度,也可以解决工况急剧变化的情况下估计结果的波动问题.
悬架的动态特性对汽车操纵稳定性有着重要影响.基于MATLAB采用滤波白噪声法建立了随机路面激励时域模型,并通过路面高度历程分布特征对路面模型精度进行了验证.借助多体动力学软件ADAMS/Car建立了前麦弗逊悬架动态模型,通过动态台架试验与仿真分析相结合,重点分析了不同车速和路面等级下悬架动态响应,以轮胎动载荷作为悬架垂向跳动评价指标,得出车速和路面不平度对汽车操纵稳定性的影响规律,为悬架设计和改进提供了理论依据和参考.