论文部分内容阅读
【目的】针对现有拖拉机耕作能量利用率低、不能根据实际情况合理分配发动机功率的问题.通过研究拖拉机耕作的耕深、速度与牵引阻力之间的复杂关系,并最终对该过程构建牵引阻力预测模型.【方法】基于此提出1种改进模糊神经网络(FNN)的牵引阻力预测方法,以耕作时的耕深、速度和牵引阻力为研究对象,通过基于密度的噪声应用空间聚类(DBSCAN)聚类算法确定FNN的初始结构和模糊规则数,并设计使用最小二乘法与反向传播算法组成的混合学习算法来实现模型的训练.【结果】将优化的模糊神经网络模型与支持向量机(SVM)、随机森林(R