论文部分内容阅读
现今图像成像技术日益普及,但受成像设备、成像环境以及在获取图像过程中外界噪声等因素的相互制约,在实际应用中很多图像成像分辨率较低,带来诸多问题.为此,提出一种有效的基于最大后验概率和非局部低秩先验的图像超分辨重建模型.首先,该模型采用连续图像序列作为数据输入,利用单幅图像内与连续图像间的相似性作为先验知识,提升相似图像块匹配度,消除图像细节丢失现象.然后,以最大后验概率框架建模,使用高斯分布和吉布斯分布拟合模型参数,提升模型泛化能力.通过相似块的奇异值估计待求块的奇异值,采用低秩截断抑制重建过程中引