论文部分内容阅读
线性判别分析(LDA)是一种普遍用于特征提取的线性分类方法。但将LDA直接用于人脸识别会遇到小样本问题和秩限制问题。为了解决以上问题,提出一种基于多阶矩阵组合的LDA算法——MLDA。该算法重新定义了传统LDA中的类内离散度矩阵Sw,使传统Fisher准则具有更好的健壮性和适应性。若干人脸数据库上的比较实验证明了MLDA的有效性。