【摘 要】
:
直流微电网并联系统多采用下垂控制实现功率分配,但线路阻抗的存在会降低其分配精度,传统均流策略基于高带宽通信网络采集电压或电流信息实现功率补偿,制造成本偏高、可靠性较低,同时通信线路存在通信延时,会对均流效果产生影响。为实现直流微电网并联系统变换器输出功率自主均分控制,提出一种无高带宽通信线路的直流微电网并联光储变换器均流策略。该策略通过分析恒压运行模式与下垂运行模式下,线路阻抗对并联变换器功率分配特性的影响规律,设计虚拟阻抗补偿环节,根据变换器自身输出电气特性,对变换器输出功率进行调节,实现输出功率的自主
【机 构】
:
西安理工大学自动化与信息工程学院,浙江大学电气工程学院
【基金项目】
:
国家自然科学基金面上项目(51877175),陕西省重点项目(2017ZDXM-GY-003),陕西省自然基金项目(2017JM5100)资助。
论文部分内容阅读
直流微电网并联系统多采用下垂控制实现功率分配,但线路阻抗的存在会降低其分配精度,传统均流策略基于高带宽通信网络采集电压或电流信息实现功率补偿,制造成本偏高、可靠性较低,同时通信线路存在通信延时,会对均流效果产生影响。为实现直流微电网并联系统变换器输出功率自主均分控制,提出一种无高带宽通信线路的直流微电网并联光储变换器均流策略。该策略通过分析恒压运行模式与下垂运行模式下,线路阻抗对并联变换器功率分配特性的影响规律,设计虚拟阻抗补偿环节,根据变换器自身输出电气特性,对变换器输出功率进行调节,实现输出功率的自主
其他文献
作为直流微电网中不可或缺的组成部分,分布式直流储能系统起着平抑系统能量波动、维持系统功率平衡的重要作用。为了提高储能系统工作的可靠性,该文对互联通信荷电状态(SOC)下垂控制策略进行深入研究。首先,对传统互联通信SOC下垂控制的系统性能及存在的问题进行分析,为之后控制策略的改进奠定基础;其次,提出改进互联通信SOC下垂控制策略,即在传统互联通信SOC下垂控制基础上引入变化系数;再次,通过对改进互联通信SOC下垂控制系统性能的分析,得到变化系数参数设计方法,在提高系统功率收敛速度的同时,限制功率输出最大值,
常规分布式潮流控制器(DPFC)需通过3次谐波电流以实现串联侧与系统的有功功率交换,串联侧所在支路首末端分别需△/YN、YN/△联结型变压器,因此在配电网中的安装地点受到一定限制。为此该文提出一种适用于配电网的新DPFC(NDPFC)拓扑;分析NDPFC工作原理,应用配电网典型系统验证其潮流调节范围与调控特性;此外,研究NDPFC串并联侧电磁暂态数学模型,为提高鲁棒性与控制精度,提出一种采用三环控制的串联侧Ⅰ、Ⅱ控制策略;最后,在不同配电网场景下,通过仿真验证了NDPFC可实现配电网综合潮流调控、补偿三相
针对小型化、低成本和批量挂载的航空机载悬挂物的网络化管理问题,首先,研究了机载悬挂物总线网络的使用特点及3种典型悬挂物总线网络;然后,对EBR1553总线网络的特点、拓扑结构、基本协议、扩展协议及其在机载悬挂物网络化中的应用等方面进行了分析与设计;最后,通过研发的仿真验证环境,验证了悬挂物EBR1553总线网络技术及应用的可行性。
利用行波的反射可以有效地探测电缆的局部缺陷和故障等阻抗异变点,反射波的传播距离和极性可分别用于定位阻抗异变点和判断阻抗异变点的类型。频域反射(FDR)技术是识别电缆中反射波的有效手段之一,但是现有FDR技术仅能计算反射波的传播距离,而不能判断波形极性,因此,该文提出一种FDR的波形极性判断技术。首先阐述FDR中反射波的识别原理,将Hanning自卷积窗的快速傅里叶变换插值算法用于FDR中反射系数谱分析,对FDR测试下限频率和频变波速造成的相位偏差进行修正,得到频率值和修正后的相位值用于计算反射波的传播距离
针对复杂电磁环境下雷达对干扰信号的分类识别问题,研究了射频噪声干扰、噪声调幅干扰、噪声调频干扰、匀速距离波门拖引干扰、速度波门拖引干扰的Choi-Williams Distribution(CWD)时频图像,采用深度学习中的AlexNet卷积神经网络模型自动提取图像各种特征细节,从而实现雷达干扰信号的分类识别。仿真结果表明:在干噪比为-10~0 dB的范围内,网络的识别率随干噪比的增加而迅速提高,干噪比为0 dB以上识别率基本接近100%;在全干噪比范围下,网络的识别正确率为99.25%,识别效果良好。
针对基于Braginskii阻抗模型求解电弧通道注入能量时,与实验设置相关的放电系数求解过程复杂,且结果难以准确地反映电弧通道发展特性等问题,该文提出基于电弧通道电压、电流的水中大电流脉冲放电电弧通道发展过程分析方法。采用“活塞”模型阐述通道快速膨胀过程及激波产生机理,提出基于电弧通道电压、电流实测数据剥离电感分量计算注入通道能量的方法,借助能量平衡方程对通道发展过程进行建模分析。与基于传统Braginskii阻抗模型的求解结果对比表明,该文提出的方法可以更准确地描述电弧通道的加速膨胀特性,为深入探究电弧
电网电压不平衡时,电流电压波动较大,基于模块化多电平变换器(MMC)的统一电能质量调节器(UPQC)采用简单的PI控制难以调节电能质量。针对MMC-UPQC在电网电压不平衡的运行状态,提出一种基于正负序分离MMC-UPQC的微分平坦控制(DFBC)方法,它能够综合治理电压和电流的电能质量问题。首先,根据MMC-UPQC的拓扑结构,建立其在不平衡电网下的数学模型,分析MMC-UPQC的内部特性,验证MMC-UPQC的平坦性和稳定性;然后,根据正负序分离方法,采用无需锁相环方法对检测量进行分离,基于微分平坦控
变流器功率器件开路故障监测与识别对提高双馈风电系统智能运维至关重要。针对现有基于变流器电压或电流单一特征以及固定阈值的方法难以同时实现功率器件故障诊断监测与识别问题,该文提出一种基于变流器直流母线电压的故障监测与基于转子电流故障识别的综合诊断方法。首先,理论分析变流器功率器件开路故障对直流母线电压的影响,基于累积和(CUSUM)算法,提出基于直流母线电压特征的故障监测方法;其次,针对转子输出电流非平稳特性和阈值固定问题,提出基于归一化输出电流平均值和绝对平均值为故障特征量及自适应阈值的故障识别方法;最后,
永磁同步牵引传动系统是轨道交通车辆稳定运行的重要组成部分,由于车辆经过断电区时,供电系统会出现短暂失电而引起母线电压突变,对牵引系统造成电流冲击以及LC振荡,甚至触发系统发生重大故障,影响系统运行。为使车辆能够平稳穿越断电区,该文通过建立轨道车辆永磁同步牵引系统穿越断电区的等效电路,推导出系统进入断电区前后的数学模型,并在此基础上提出一种通过整流发电稳定母线电压穿越断电区的控制策略,避免关闭牵引系统和断开主接触器,同时降低驶离断电区时母线电压突变,从而减小牵引系统的冲击及振荡。仿真和试验结果验证了所提控制
机械式直流断路器弧后特性是表征其开断性能的重要参数。为获得直流开断过程中真空开关弧后电流峰值与时间、电流零点附近的di/dt、du/dt等影响规律,该文首先分析基于电流转移的机械式真空直流断路器弧后电流测量原理,设计机械式真空直流断路器弧后电流测量装置参数,搭建基于强迫过零方式的机械式直流开断实验平台,测量开断电流为1.5kA情况下机械式真空直流断路器弧后电流,讨论换向频率和恢复电压对弧后电流的影响。研究表明,基于电流转移的弧后电流测量装置可以有效测量弧后电流,弧后电流随着换向频率和恢复电压的增大而增大,