【摘 要】
:
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have been rapidly established as promising building blocks for versatile atomic scale circuits and multifunctional devices.However,the high contact resistance in TMDs based transistors seriously
【机 构】
:
SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology,International Collab
论文部分内容阅读
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have been rapidly established as promising building blocks for versatile atomic scale circuits and multifunctional devices.However,the high contact resistance in TMDs based transistors seriously hinders their applications in complementary electronics.In this work,we show that an Ohmic homojunction n-type tungsten diselenide(WSe2) transistor is realized through spatially controlling cesium (Cs) doping region near the contacts.We find that the remarkable electron doping effect of Cs stimulates a semiconductor to metal (2H to 1T\') phase transition in WSe2,and hence the formation of 2H-1T\'hetero-phase contact.Our method significantly optimizes the WSe2 transport behavior with a perfect low subthreshold swing of ~ 61 mV/dec and ultrahigh current on/off ratio exceeding ~ 109.Meanwhile,the electron mobility is enhanced by nearly 50 times.We elucidate that the ideal n-type behavior originates from the negligible Schottky barrier height of ~ 19 meV and low contact resistance of ~ 0.9 kΩ·μm in the 2H-1T\'homojunction device.Moreover,based on the Ohmic hetero-phase configuration,a WSe2 inverter is achieved with a high gain of ~ 270 and low power consumption of ~ 28 pW.Our findings envision Cs functionalization as an effective method to realize ideal Ohmic contact in 2D WSe2 transistors towards high performance complementary electronic devices.
其他文献
Wearable biopotential sensing devices are essential to long-term and real-time monitoring of human health.Non-contact,capacitive sensing electrodes prevent potential skin irritations,and are thus beneficial for long-term monitoring.Existing capacitive ele
Spirothiopyran (STP) is particularly attractive when used as a mechanophore to endow polymers with both damage-signaling and self-reinforcing capacity.It is,however,not clear the actual force required to induce the cycloreversion of STP into ring-opened t
Design of metal-free photocatalysts with customized chemical structure and nano-architecture is promising for photocatalytic hydrogen peroxide (H2O2) production.Herein,for the first time,mesoporous resorcinol-formaldehyde (MRF) nanobowls with optimized be
Fluorinated porous organic networks (F-PONs) have demonstrated unique properties and applications,but approaches capable of affording F-PONs with high fluorine content and robust nanoporous architecture under metal-free and easy handling conditions are st
Cationic azole-based metal-organic frameworks (MOFs) with remarkable stability and unique pore environment have aroused great research interests.Meanwhile,flexible MOFs which can undergo pore-structure changes upon exposure to external stimuli are ideal m
It is challenging to develop an in vitro catalytic system to conduct natural surface-confined enzymatic reactions in a stable,efficient,and spatially defined manner.Here,we report that an artificial catalyst,which composes of trypsin and a calcium ion exc
Copper-hydrides have been intensively studied for a long time due to their utilization in a variety of technologically important chemical transformations.Nevertheless,poor stability of the species severely hinders its isolation,storage and operation,which
Introducing heating function to oil sorbents opens up a new pathway to the fast cleanup of viscous crude oil spills in situ.The oil sorption speed increases with the rise of the temperature,thus oil sorbents with high heating temperature are desirable.Bes
In this study,we developed a novel confinement-synthesis approach to layered double hydroxide nanodots (LDH-NDs) anchored on carbon nanoparticles,which formed a three-dimensional (3D) interconnected network within a porous carbon support derived from pyro
Brain ischemia is the second leading cause of death and the third leading cause of disability in the world.Systemic delivery of microRNA,a class of molecules that regulate the expression of cellular proteins associated with angiogenesis,cell growth,prolif