论文部分内容阅读
During the production of Ti-bearing Al-killed ultra-low-carbon(ULC) steel, two different heating processes were used when the converter tapping temperature or the molten steel temperature in the Ruhrstahl–Heraeus(RH) process was low: heating by Al addition during the RH decarburization process and final deoxidation at the end of the RH decarburization process(process-Ⅰ), and increasing the oxygen content at the end of RH decarburization, heating and final deoxidation by one-time Al addition(process-Ⅱ). Temperature increases of 10°C by different processes were studied; the results showed that the two heating processes could achieve the same heating effect. The T.[O] content in the slab and the refining process was better controlled by process-Ⅰ than by process-Ⅱ. Statistical analysis of inclusions showed that the numbers of inclusions in the slab obtained by process-Ⅰ were substantially less than those in the slab obtained by process-Ⅱ. For process-Ⅰ, the Al_2O_3 inclusions produced by Al added to induce heating were substantially removed at the end of decarburization. The amounts of inclusions were substantially greater for process-Ⅱ than for process-Ⅰ at different refining stages because of the higher dissolved oxygen concentration in process-Ⅱ. Industrial test results showed that process-Ⅰ was more beneficial for improving the cleanliness of molten steel.
During the production of Ti-bearing Al-killed ultra-low-carbon (ULC) steel, two different heating processes were used when the converter tapping temperature or the molten steel temperature in the Ruhrstahl-Heraeus (RH) process was low: Al addition during the RH decarburization process and final deoxidation at the end of the RH decarburization process (process-I), and increasing the oxygen content at the end of RH decarburization, heating and final deoxidation by one-time Al addition The increase of 10 ° C by different processes were studied; the results showed that the two heating processes could achieve the same heating effect. The T. [0] content in the slab and the refining process was better controlled by process-I than by process-Ⅱ. Statistical analysis of inclusions showed that the numbers of inclusions in the slab obtained by process-I were substantially less than those in the slab obtained by process-Ⅱ. For process-Ⅰ, the Al_2O_3 inclusions ions produced by Al added to induce heating were substantially removed at the end of decarburization. The amounts of inclusions were substantially greater for process-Ⅱ than for process-I at different refining stages because of the higher dissolved oxygen concentration in process-Ⅱ. Industrial test results showed that process-I was more beneficial for improving the cleanliness of molten steel.