论文部分内容阅读
A number of edge-aware filters can efficiently boost the appearance of an image by detail decomposition and enhancement. However, they often fail to produce photographic enhanced appearance due to some visible artifacts, especially noise, halos and unnatural contrast. The essential reason is that the guidance and the constraint of high-quality appearance are not sufficient enough in the process of enhancement. Thus our idea is to train a detail dictionary from a lot of high-quality patches in order to constrain and control the entire appearance enhancement. In this paper, we propose a novel leing-based enhancement method for photographic appearance, which includes two main stages: dictionary training and sparse reconstruction. In the training stage, we construct a training set of detail patches extracted from some high-quality photos, and then train an overcomplete detail dictionary by iteratively minimizing an?1-norm energy function. In the reconstruction stage, we employ the trained dictionary to reconstruct the boosted detail layer, and further formalize a gradient-guided optimization function to improve the local coherence between patches. Moreover, we propose two evaluation metrics to measure the performance of appearance enhancement. The final experimental results have demonstrated the effectiveness of our leing-based enhancement method.