论文部分内容阅读
提出了一种新的多输出支持向量回归算法,给出了定义在超球上的损失函数,并将训练SVM转化为迭代解线性方程组,在求解过程中采用边计算边使矩阵降阶的方法,加快了运算速度.建立了该算法应用于股市预测的模型,对上证指数的建模与预测表明:与单输出支持向量回归算法建立的模型相比,该算法具有更好的整体预测精度和抗噪性能,是对股市进行分析和预测的一种可行而有效的方法.