论文部分内容阅读
在无人机视觉辅助惯性导航系统中,不确定延时的图像数据在无人机室内导航中是无法满足与其他传感器同步要求的,因此准确估计视觉传感器与惯性测量单元(IMU)之间的相对延时是非常重要的。本文提出了一种可以有效估计图像延时的方法,并根据延时进行视觉数据的延时补偿,最后利用扩展卡尔曼滤波(EKF)实现IMU数据与视觉数据的融合,从而估计出无人机的实时位姿和速度。通过软件仿真和在无人机平台上的实验验证结果表明,该方法能准确地估计延时,使室内实时导航的定位性能得到明显改善。