论文部分内容阅读
提出一种高效的规则提取算法,采用熵测量改进Chi-merge特征区间离散化方法,模糊划分输入空间.先为每个数据生成单条规则,再聚集相同前项的单条规则产生带概率属性的分类规则.提取的规则无需任何调整,应用模糊推理便可获得较理想的分类效果,同时支持增量式规则更新.最后给出了新方法的性能测试结果.