模拟仿真在湿法炼锌和炼铜中的应用

来源 :材料科学与工艺 | 被引量 : 0次 | 上传用户:qy19871120wr
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
湿法冶金因独特的工艺技术广泛应用于有色金属的提取过程。与火法冶金相比,湿法冶金具有污染较容易得到控制、对原料适应性强、冶金过程具有较强选择性、规模可控、机动性强、有利于综合回收有价金属、成本较低及能够得到纯度较高的产品等优点。数值模拟建模和仿真是研究和优化湿法冶金过程的一种成本较低、效率较高的方法。本文综述了湿法冶金工业中电积锌和电积铜过程的电流效率、电解液流场及电场等关键技术参数的多物理场数值模拟的研究进展,概述了模拟仿真在湿法冶金工业中的实际应用价值和意义。
其他文献
近年来,人们对智能响应材料的关注度与日俱增,建筑材料和建筑技术的迅速发展推动着混凝土向智能化方向发展,使损伤响应型混凝土成为智能化材料领域的研究热点.随着混凝土材料发展的高级阶段的到来,力场损伤智能响应型纤维混凝土的结构设计越来越巧妙,研究技术越来越先进,研究方法越来越优化,应用前景也越来越广阔,因此,对智能纤维混凝土力场损伤的响应设计、响应机理及其监测与修复进行研究十分必要.当前混凝土性能参数的监测主要是采用嵌入式传感器和表面安装传感器的方法,这些方法具有灵敏度低、无法实时监测、操作程序复杂、校准耗时、
热喷涂涂层质量很大程度上是由颗粒沉积时的状态决定,颗粒不仅受到粒径尺寸的影响,还与飞行过程中焰流特性密切相关。本文以JP8000型超音速火焰喷涂系统(HVOF)喷涂过程为研究对象,采用计算流体动力学方法探究不同氧油质量比下焰流行为和计算域内的燃烧特性;分析不同粒径的颗粒在焰流场内的轨迹特性和速度、温度演变规律,依据数值模拟结果优化工艺参数。计算结果表明:氧油比为3时,HVOF系统内焰流温度最高、速度最快,表明氧油充分燃烧;颗粒注入后可能与枪管璧发生碰撞,且其粒径越大,碰撞发生的临界入射速度越小,碰撞后的粒
改性可改善纺织材料性能或赋予其新的性能.改性方法主要包括生物改性法、化学改性法和物理改性法.等离子体技术是物理改性法中的典型技术,主要基于电离产生的等离子体来实现各种改性目的.近年来,等离子体技术已成为一个非常活跃、发展迅速的研究领域,在纺织材料的表面改性中占有重要地位.相对于其他改性方法而言,等离子体技术具有化学药品使用少、污染小、可操作性强等优势.通过等离子体在材料表面的作用可实现材料改性而不影响材料的内部结构.基于等离子体技术处理纺织材料的研究主要集中在以下四个方面:(1)清洁效果;(2)改变表面形
铝内胆碳纤维全缠绕气瓶的铺层设计主要基于网格理论,但该方法仅能得出满足爆破强度的参数,不能满足对铝内胆疲劳性能的要求,因而难以适应气瓶产品的设计需要。将网格理论与铝合金S-7V曲线结合,提出一种基于铝合金疲劳寿命设计纤维缠绕层厚度的新方法。依据该方法给出的缠绕层厚度构建有限元模型,通过数值模拟确定合理的自紧力,计算不同载荷下的气瓶应力分布,根据爆破试验败据,利用有限元模型预测气瓶的爆破强度、失效位置及失效形式。结果表明:该设计方法可便捷地得出满足性能要求的气瓶缠绕层厚度;自紧力合理值可根据设计预期通过有限
抽油杆可以把地面抽油机动能传递给抽油泵,是石油生产中重要的工件之一.随着采油工程向腐蚀井、深井、超深井发展,普通抽油杆的耐蚀性、抗拉强度和疲劳强度等性能已不能满足生产要求.本文综述了C级、D级、KD级和H级抽油杆的分类标准、制备方法、应用环境及面临的挑战.抽油杆钢服役失效包括腐蚀、疲劳、机械磨损等.分析发现,抽油杆的失效主要是疲劳断裂或腐蚀疲劳断裂.在腐蚀性环境条件下,抽油杆会发生表面电化学腐蚀,形成腐蚀坑,而腐蚀坑是疲劳裂纹的主要萌生源.在拉-拉或拉-压载荷的作用下,抽油杆发生疲劳断裂.本文简单介绍了抽
功率半导体由于其工作电压高、电流大、放热量大等特点,已逐渐向小型化、高致密化发展.新一代宽禁带半导体器件因其优异的性能可以提高工作温度和功率密度,展现出较好的应用前景,这对与之匹配的电力封装材料提出了更高的要求.随着工作温度的不断升高,高温环境下失稳和运行环境不稳定等安全问题亟需解决,对功率半导体芯片封装接头的高温可靠性提出了更高的要求.且由于污染严重的高铅焊料不满足环保要求,高温无铅焊料的研制与对相应连接技术的研究成为当前的研究重点.瞬态液相扩散连接(Transient liquid phase bon
近年来玻璃纤维树酯复合材料(GFRP)广泛应用于各类工程领域,它在服役环境中的性能劣化过程相对复杂,需要联系其宏微观特征变化进行深入研究.利用纳米压痕技术测试GFRP中各组分的微观力学性能有助于建立材料微观与宏观尺度之间性能的相互联系,为深入探讨GFRP的性能演化提供依据.然而,在利用纳米压痕对GFRP进行检测过程中,由于约束效应、树酯堆积效应和粘弹性效应等作用的影响,会导致测量值与真实结果之间产生偏差.本文从纳米压痕技术的基本原理入手,对其在测试GFRP内玻璃纤维、树酯基体和界面三类区域时的既有研究进行
镁合金作为目前最轻的商用金属结构材料,在航空航天、汽车、3C产品等领域具有广泛的应用前景.同时,面对全球铁铝资源日趋紧缺和我国大量进口铁铝矿石的困境,推广应用镁合金材料具有重要的战略意义.与常用的钢铁材料和铝合金相比,镁合金的研究与开发还不充分,应用也受限.镁合金的耐腐蚀性能差,部分原因是镁的化学活性高,且表面生成的保护膜不具备保护作用.尤其在高温下,镁及其合金极易氧化,甚至燃烧,释放大量的热,这成为限制镁合金大量推广应用的瓶颈之一.针对镁及其合金极易氧化的问题,近年来研究学者围绕其氧化机制和影响因素开展
铜及其合金具有优良的耐腐蚀、导电导热性能及机械加工性能,广泛应用于电气、轻工、机械制造等领域.随着生产条件的不断优化,为同时满足不同的应用需求,人们期望获得综合性能更加优良或某一性能特别突出的零部件,但传统制造加工方法工艺复杂,且生产过程中材料利用率较低,存在很大的局限性.为实现零件表面合金化,改善零件表面性能缺陷,表面涂层技术被开发并广泛应用;为实现复杂结构零件的成形,人们开发了增材制造技术.铜合金增材制造技术通过逐层累积的方法,可以高效快速地制造出各类精密零部件,不仅使合金材料利用率高,还能够满足各种
为实现对工业废弃物粉煤灰的剩余价值利用,尝试以粉煤灰作为主要原料制备焊接复合活性剂,并在AZ91镁合金板上进行A-TIG焊。利用焊缝的电特性实时采集、焊接温度场采集、电弧力测试等手段研究活性剂对电弧影响,通过熔池Bi粒子示踪实验探究活性剂对表面张力温度梯度影响。结果表明:与常规TIG焊相比,粉煤灰复合活性剂可以使焊缝熔深增深1.4倍,熔宽减小,深宽比是常规TIG焊的1.43倍。粉煤灰复合活性剂中氟化物的解离和电离吸热过程、带电粒子的电子扩散和复合过程可以促进电弧收缩,使焊接电压升高,热输入量提高。而活性剂