论文部分内容阅读
针对行星齿轮箱早期微弱故障难以诊断的问题,提出一种结合Teager能量算子(TEO)解调和随机共振增强输出的方法以实现故障特征提取。首先,对行星齿轮箱振动信号进行经验模式分解(EMD)并选取包含故障信息的分量信号,使用TEO解调运算获得分量信号的解调信号。其次,为满足随机共振系统的小参数条件,将解调信号做适当压缩处理并进行频率二次采样。再次,以定义的随机共振系统输出信噪比为适应度函数,采用粒子群算法优化随机共振系统的结构参数,进而重构随机共振系统以实现信号、噪声以及非线性系统的最佳匹配。最后,将信号重新输