ZrO2(Y2O3)含量对双峰晶粒度分布Mo-12Si-8.5B-ZrO2(Y2O3)复合材料力学性能的影响

来源 :复合材料学报 | 被引量 : 0次 | 上传用户:iqplll
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
多相Mo-12Si-8.5B合金是一种很有应用前景的高温结构材料,为了同时提高Mo-12Si-8.5B合金的强度和韧性,提出了采用纳米ZrO2(Y2O3)强韧化具有双峰晶粒度分布Mo-12Si-8.5B复合材料的方法.首先采用溶胶-凝胶和高温氢还原法制备了纳米Mo-ZrO2(Y2O3)复合粉末,然后以纳米Mo-ZrO2(Y2O3)粉末和微米Mo粉末为原材料,采用放电等离子烧结(SPS)技术制备了具有双峰晶粒度分布的Mo-12Si-8.5B-ZrO2(Y2O3)复合材料.结果表明,随着ZrO2(Y2O3)含量的增加,制备的Mo-ZrO2(Y2O3)纳米粉末的粒度和烧结体相对致密度均逐渐减小,ZrO2(Y2O3)含量小于2.5wt%时,烧结体的相对致密度均大于98.1%.当ZrO2(Y2O3)含量为1.5wt%和2.5wt%时,复合材料具有较高的硬度(9.76~9.98 GPa),抗弯强度(672~678 MPa)和断裂韧性(12.68~12.82 MPa·m1/2).Mo-12Si-8.5B-ZrO2(Y2O3)复合材料中Mo晶粒细化、粗细Mo晶粒的晶界强化和纳米ZrO2(Y2O3)颗粒第二相强化是提高硬度和抗弯强度主要原因;复合材料中粗晶粒Mo和纳米ZrO2(Y2O3)有助于断裂韧性的提高,材料的增韧机制主要是裂纹偏转和裂纹桥接.
其他文献
采用落锤冲击试验模拟低速冲击过程,对碳纤维增强环氧树脂基复合材料传动轴的轴管在不同能级冲击下的损伤行为以及冲击后的剩余压缩性能进行了研究;通过ABQUAS有限元分析软件和X射线断层扫描技术(CT)相结合的方法观察了复合材料轴管在受到低速冲击时的损伤形式,研究其内部损伤规律.结果表明,复合材料轴管的抗冲击形变能力随着冲击能量的增加先增强后减弱,在冲击能量为10~20 J之间出现最大值.CT无损检测结果显示复合材料轴管的失效形式包括分层损伤、树脂开裂和纤维破裂(断裂).在低能量冲击时,复合材料轴管主要产生分层
为准确预测三维角联锁机织复合材料的宏观弹性性能,对基于CT图像几何参数实测数据建立的内单胞和面单胞细观实体模型进行数值分析,其中面单胞模型采用组合面单胞形式,并开展了三维角联锁机织超高分子量聚乙烯(UHMWPE)纤维/聚氨酯复合材料的经向拉伸实验.结果表明:基于两单胞模型预测该复合材料的宏观弹性模量与实验结果吻合较好,组合面单胞的经向拉伸模量小于内单胞;经向拉伸时复合材料在经纱间接触面处、纬纱沿宽度方向的端部和经纱与基体的交界面处易出现应力集中现象;当纬纱层数小于30层时,应该考虑表面区域对复合材料整体力
为厘清碳纤维增强树脂基复合材料(Carbon fiber reinforced plastics,CFRP)复杂几何构件相控阵超声检测中声传播规律,围绕CFRP材料R区开展了弹性特性表征、有限元建模、声场计算及实验验证工作.基于超声液浸背反射法和模拟退火算法求解了CFRP单向板刚度矩阵反问题,并借助Bond变换实现了R区弹性特性的定量描述.结合微观组织分析等获取材料、几何特征,建立了虑及曲面形状、叠层、弹性各向异性的R区相控阵超声检测有限元模型,计算了R区相控阵超声检测A、B扫描信号,发现存在结构噪声和缺
电解水包括析氢反应(HER)与析氧反应(OER),由于OER是复杂的4电子转移过程,制作出具有优异耐久性的高活性的非贵金属OER电催化剂对于电解水至关重要.为了降低成本,选择304型不锈钢网(SS)作为基体,使用电沉积的方法制备钴-镍双氢氧化物,利用真空煅烧的方法制备钴-镍氧化物.使用XRD、SEM、TEM、XPS和电化学工作站对Co2Ni1O4/SS复合材料的晶体结构、形貌和电催化OER性能进行了研究.结果表明:电沉积制备的钴-镍双氢氧化物煅烧之后转变成尖晶石结构的钴-镍氧化物;在不锈钢表面成功合成了大
将具有优异介电性能的Ca0.7La0.2TiO3陶瓷填充到氰酸酯(CE)树脂中,通过熔融浇铸技术成功制备了Ca0.7La0.2TiO3/CE复合材料.结果表明,不同Ca0.7La0.2TiO3填料体积分数的复合材料微观结构致密.填料体积分数为40vol%时,获得了高介电常数(ε)和低介电损耗(tanδ)(ε=25.7,tanδ=0.0055,10 GHz)的复合材料,且弯曲强度达到130 MPa,同时材料的导热系数提高到0.8601 W/(m·K),可有效进行散热.TGA结果表明,相比于CE树脂,复合材料
以电解铜粉与石墨粉为原料,阴离子乳化沥青为粘结剂,采用粉末冶金技术制备了铜-石墨-乳化沥青复合材料,并通过XRD、EDS和SEM对石墨含量为2wt%~8wt%的铜-石墨-乳化沥青复合材料微观组织进行表征,研究了铜-石墨-乳化沥青复合材料的摩擦磨损性能、力学和电学性能,并与不含乳化沥青的铜-石墨复合材料进行比较.结果表明,乳化沥青可以有效防止石墨颗粒的聚集,对石墨和铜基体起粘结作用;在两相界面处几乎没有间隙,并且产生了层片状石墨;石墨含量为4wt%的试样磨损量最小,仅为0.0049 g,摩擦系数约为0.02
针对高孔隙率C/SiC复合材料空气耦合超声检测,引入考虑孔隙形貌的随机孔隙模型开展数值模拟研究.结合力学和声学性能测试计算材料弹性刚度矩阵,借助组织分析建立考虑孔隙微观形貌、孔隙率分别为5%、10%、15%的随机孔隙有限元模型,研究了空气耦合超声透射法检测过程中超声波传播特征及典型缺陷的响应规律.结果表明:材料纵波声速约2830 m/s,横观各向同性五个独立弹性常数分别为158.149、88.589、34.141、15.288和13.793 GPa.孔隙呈长条状,随孔隙率增加,超声衰减逐渐增大;孔隙尺寸与
纳米银作为一种新型抑菌剂有望成为传统抑菌剂的替代品,制备稳定、高效、环保的新型纳米银抑菌产品成为当今的研究热点.本研究以葡萄籽提取液为还原剂和稳定剂,聚乙烯醇(PVA)为载体,采用一步法“绿色”生物合成出一种纳米银/聚乙烯醇复合物(AgNPs/PVA).通过紫外-可见(UV-Vis)吸收光谱、透射电镜(TEM)、X射线衍射(XRD)等手段对合成产物进行了表征.结果表明银离子被葡萄籽提取物成功还原成纳米银并附着在PVA的表面,纳米银颗粒均匀,呈现单分散状态,粒径较小,平均粒径为14 nm左右.AgNPs/P
传统中性墨水多用丙烯酸树脂做增稠剂,且不具备导电能力,因此将羧甲基纤维素(CMC)与多壁碳纳米管(MWCNT)混合,使制备墨水书写后具备导电能力.采用超声制得CMC-MWCNT导电墨水,通过中性笔书写于纸上,对制备导电墨水的稳定性能、流变性能、书写性能和书写字迹的耐腐蚀性能、导电性能、折叠稳定性能进行分析,并与市场上晨光中性笔墨水(CG)进行对比.当添加CMC为0.3wt%、0.6wt%时,导电墨水的Zeta电位、屈服应力、屈服黏度均较低,书写时出现漏墨,书写后电阻较小,但折叠一百次后电阻增大较多,分别增
为减轻高聚物粘结炸药(PBX)由于力、热等环境因素所产生的微裂纹等损伤对于其性能与使用寿命的影响,根据颗粒填充高分子复合材料的结构特性,设计合成了含DA键的本征型自修复高聚物粘结剂,以期实现PBX内部损伤的自主修复.研究结果表明,采用含可逆DA共价键的TAPE-DAPU为粘结剂,设计制备的PBX材料具有较强的损伤愈合能力,当损伤较轻时,该PBX的强度恢复率超过95%,对于较严重的贯穿性损伤,其修复效率也在65%以上.