论文部分内容阅读
支持向量机是一种新的机器学习方法,它具有良好的推广性和分类精确性。但是在利用支持向量机的分类算法处理实际问题时,该算法的计算速度较慢、处理问题效率较低。文中介绍了一种新的学习算法,就是将粗糙集和支持向量机相结合,利用粗糙集对支持向量机的训练样本进行预处理,从而缩短样本的训练时间,提高基于SVM预测系统实时性。文中最后利用该方法进行了数据试验,试验结果表明了该方法可以大大缩短样本的训练时间,提高基于支持向量机处理预测系统的效率。从而也证明了该方法的有效性。